70 research outputs found

    Arabidopsis HY5 protein functions as a DNA-binding tag for purification and functional immobilization of proteins on agarose/DNA microplate

    Get PDF
    AbstractProtein microarray is considered to be one of the key analytical tools for high-throughput protein function analysis. Here, we report that the Arabidopsis HY5 functions as a novel DNA-binding tag (DBtag) for proteins. We also demonstrate that the DBtagged proteins could be immobilized and purified on a newly designed agarose/DNA microplate. Furthermore, we show three applications using the microarray: (1) detection of autophosphorylation activity of DBtagged human protein kinases and inhibition of their activity by staurosporine, (2) specific cleavage of DBtagged proteins by a virus protease and caspase 3, and (3) detection of a protein–protein interaction between the DBtagged UBE2N and UBE2v1. Thus, this method may facilitate rapid functional analysis of a wide range of proteins

    Identification and Biochemical Characterization of High Mobility Group Protein 20A as a Novel Ca2+/S100A6 Target

    Get PDF
    During screening of protein-protein interactions, using human protein arrays carrying 19,676 recombinant glutathione s-transferase (GST)-fused human proteins, we identified the high-mobility protein group 20A (HMG20A) as a novel S100A6 binding partner. We confirmed the Ca2+-dependent interaction of HMG20A with S100A6 by the protein array method, biotinylated S100A6 overlay, and GST-pulldown assay in vitro and in transfected COS-7 cells. Co-immunoprecipitation of S100A6 with HMG20A from HeLa cells in a Ca2+-dependent manner revealed the physiological relevance of the S100A6/HMG20A interaction. In addition, HMG20A has the ability to interact with S100A1, S100A2, and S100B in a Ca2+-dependent manner, but not with S100A4, A11, A12, and calmodulin. S100A6 binding experiments using various HMG20A mutants revealed that Ca2+/S100A6 interacts with the C-terminal region (residues 311-342) of HMG20A with stoichiometric binding (HMG20A:S100A6 dimer = 1:1). This was confirmed by the fact that a GST-HMG20A mutant lacking the S100A6 binding region (residues 311-347, HMG20A-Delta C) failed to interact with endogenous S100A6 in transfected COS-7 cells, unlike wild-type HMG20A. Taken together, these results identify, for the first time, HMG20A as a target of Ca2+/S100 proteins, and may suggest a novel linkage between Ca2+/S100 protein signaling and HMG20A function, including in the regulation of neural differentiation

    Regulation of the tubulin polymerization-promoting protein by Ca2+/S100 proteins

    Get PDF
    To elucidate S100 protein-mediated signaling pathways, we attempted to identify novel binding partners for S100A2 by screening protein arrays carrying 19,676 recombinant glutathione S-transferase (GST)-fused human proteins with biotinylated S100A2. Among newly discovered putative S100A2 interactants, including TMLHE, TRH, RPL36, MRPS34, CDR2L, OIP5, and MED29, we identified and characterized the tubulin polymerization-promoting protein (TPPP) as a novel S100A2-binding protein. We confirmed the interaction of TPPP with Ca2+/S100A2 by multiple independent methods, including the protein array method, S100A2 overlay, and pulldown assay in vitro and in transfected COS-7 cells. Based on the results from the S100A2 overlay assay using various GST-TPPP mutants, the S100A2-binding region was identified in the C-terminal (residues 111-160) of the central core domain of a monomeric form of TPPP that is involved in TPPP dimerization. Chemical cross-linking experiments indicated that S100A2 suppresses dimer formation of His-tagged TPPP in a dosedependent and a Ca2+-dependent manner. In addition to S100A2, TPPP dimerization is disrupted by other multiple S100 proteins, including S100A6 and S100B, in a Ca2+-dependent manner but not by S100A4. This is consistent with the fact that S100A6 and S100B, but not S100A4, are capable of interacting with GST-TPPP in the presence of Ca2+. Considering these results together, TPPP was identified as a novel target for S100A2, and it is a potential binding target for other multiple S100 proteins, including S100A6 and S100B. Direct binding of the S100 proteins with TPPP may cause disassembly of TPPP dimer formation in response to the increasing concentration of intracellular Ca2+, thus resulting in the regulation of the physiological function of TPPP, such as microtubule organization

    Two cases of pulmonary dirofilariasis

    Get PDF
    Pulmonary dirofilariasis is almost always asymptomatic. An abnormal nodule was accidentally discovered by a chest x-ray during a medical checkup and detailed examination for other diseases was performed. Case 1. A female patient, in her 70s, was admitted owing to flu-like symptoms and bloody sputum. A chest computed tomography(CT)scan revealed a nodular shadow with 10‐mm ground glass opacity in the right lower lobe. Case2. A female patient, in her 60s, was admitted due to an abnormal shadow on a chest xray in the left lung during a regular medical checkup. A chest CT scan revealed a nodular shadow with 13‐mm ground glass opacity in the left upper lobe. Lung cancer was suspected in both cases. Thoracoscopy and partial lung resection were performed to confirm the diagnosis. The specimen consisted of granulation tissue and no malignancy was found at operation. Final pathological diagnosis revealed pulmonary dirofilariasis. Pulmonary dirofilariasis can be definitively diagnosed by detecting a worm body. We believe partial lung resection during video-assisted thoracic surgery is a minimally invasive and an effective treatment for this disease

    Evaluation of antigen-positive toxin-negative enzyme immunoassay results for the diagnosis of toxigenic Clostridium difficile infection

    Get PDF
    Clostridium difficile (C. difficile)-associated diarrhea (CDAD) is a challenging nosocomial infectious disease. C. DIFF Quik Chek Complete assay is widely used to detect glutamate dehydrogenase (GDH) antigen and toxin A/B of C. difficile simultaneously. However, the interpretation of GDH positive/toxin negative results is problematic.We performed a retrospective study of patients with GDH positive/toxin negative results to determine the probability of detecting toxigenic C. difficile and its risk factors. Between April 2012 and March 2017, we investigated cultures of fecal specimens followed by toxin detection tests. The clinical histories of patients with and without toxigenic C. difficile were compared using univariate- and multivariate-analyses. In total, 2675 patients were examined using C. Diff Quik Chek Complete assay. Among 356 GDH positive/toxin negative patients, cultures were performed in 220 cases and toxigenic C. difficile was recovered from 139 (63.2%) specimens. Patients with toxigenic C. difficile had significantly lower body mass index than those without. Over half the GDH positive/toxin negative patients were infected with toxigenic C. difficile. Lower BMI was a CDAD risk factor in this patient population. These data can be utilized to initiate isolation and clinical interventions before confirmatory test results are available
    corecore