8 research outputs found

    Computer-vision based method for quantifying rising from chair in Parkinson's disease patients

    Get PDF
    BACKGROUND: The ability to arise from a sitting to a standing position is often impaired in Parkinson's disease (PD). This impairment is associated with an increased risk of falling, and higher risk of dementia. We propose a novel approach to estimate Movement Disorder Society Unified PD Rating Scale (MDS-UPDRS) ratings for ā€œitem 3.9ā€ (arising from chair) using a computer vision-based method, whereby we use clinically informed reasoning to engineer a small number of informative features from high dimensional markerless pose estimation data. METHODS: We analysed 447 videos collected via the KELVIN-PDā„¢ platform, recorded in clinical settings at multiple sites, using commercially available mobile smart devices. Each video showed an examination for item 3.9 of the MDS-UPDRS and had an associated severity rating from a trained clinician on the 5-point scale (0, 1, 2, 3 or 4). The deep learning library OpenPose was used to extract pose estimation key points from each frame of the videos, resulting in time-series signals for each key point. From these signals, features were extracted which capture relevant characteristics of the movement; velocity variation, smoothness, whether the patient used their hands to push themselves up, how stooped the patient was while sitting and how upright the patient was when fully standing. These features were used to train an ordinal classification system (with one class for each of the possible ratings on the UPDRS), based on a series of random forest classifiers. RESULTS: The UPDRS ratings estimated by this system, using leave-one-out cross validation, corresponded exactly to the ratings made by clinicians in 79% of videos, and were within one of those made by clinicians in 100% of cases. The system was able to distinguish normal from Parkinsonian movement with a sensitivity of 62.8% and a specificity of 90.3%. Analysis of misclassified examples highlighted the potential of the system to detect potentially mislabelled data. CONCLUSION: We show that our computer-vision based method can accurately quantify PD patientsā€™ ability to perform the arising from chair action. As far as we are aware this is the first study estimating scores for item 3.9 of the MDS-UPDRS from singular monocular video. This approach can help prevent human error by identifying unusual clinician ratings, and provides promise for such a system being used routinely for clinical assessments, either locally or remotely, with potential for use as stratification and outcome measures in clinical trials

    A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson's Disease.

    Get PDF
    Gait is a core motor function and is impaired in numerous neurological diseases, including Parkinson's disease (PD). Treatment changes in PD are frequently driven by gait assessments in the clinic, commonly rated as part of the Movement Disorder Society (MDS) Unified PD Rating Scale (UPDRS) assessment (item 3.10). We proposed and evaluated a novel approach for estimating severity of gait impairment in Parkinson's disease using a computer vision-based methodology. The system we developed can be used to obtain an estimate for a rating to catch potential errors, or to gain an initial rating in the absence of a trained clinician-for example, during remote home assessments. Videos (n=729) were collected as part of routine MDS-UPDRS gait assessments of Parkinson's patients, and a deep learning library was used to extract body key-point coordinates for each frame. Data were recorded at five clinical sites using commercially available mobile phones or tablets, and had an associated severity rating from a trained clinician. Six features were calculated from time-series signals of the extracted key-points. These features characterized key aspects of the movement including speed (step frequency, estimated using a novel Gamma-Poisson Bayesian model), arm swing, postural control and smoothness (or roughness) of movement. An ordinal random forest classification model (with one class for each of the possible ratings) was trained and evaluated using 10-fold cross validation. Step frequency point estimates from the Bayesian model were highly correlated with manually labelled step frequencies of 606 video clips showing patients walking towards or away from the camera (Pearson's r=0.80, p<0.001). Our classifier achieved a balanced accuracy of 50% (chance = 25%). Estimated UPDRS ratings were within one of the clinicians' ratings in 95% of cases. There was a significant correlation between clinician labels and model estimates (Spearman's Ļ=0.52, p<0.001). We show how the interpretability of the feature values could be used by clinicians to support their decision-making and provide insight into the model's objective UPDRS rating estimation. The severity of gait impairment in Parkinson's disease can be estimated using a single patient video, recorded using a consumer mobile device and within standard clinical settings; i.e., videos were recorded in various hospital hallways and offices rather than gait laboratories. This approach can support clinicians during routine assessments by providing an objective rating (or second opinion), and has the potential to be used for remote home assessments, which would allow for more frequent monitoring

    Computer vision quantification of whole-body Parkinsonian bradykinesia using a large multi-site population.

    Get PDF
    Parkinson's disease (PD) is a common neurological disorder, with bradykinesia being one of its cardinal features. Objective quantification of bradykinesia using computer vision has the potential to standardise decision-making, for patient treatment and clinical trials, while facilitating remote assessment. We utilised a dataset of part-3 MDS-UPDRS motor assessments, collected at four independent clinical and one research sites on two continents, to build computer-vision-based models capable of inferring the correct severity rating robustly and consistently across all identifiable subgroups of patients. These results contrast with previous work limited by small sample sizes and small numbers of sites. Our bradykinesia estimation corresponded well with clinician ratings (interclass correlation 0.74). This agreement was consistent across four clinical sites. This result demonstrates how such technology can be successfully deployed into existing clinical workflows, with consumer-grade smartphone or tablet devices, adding minimal equipment cost and time

    The Neuropharmacology of Ethanol Self-Administration

    No full text
    corecore