2,663 research outputs found
Quantum decoherence of the damped harmonic oscillator
In the framework of the Lindblad theory for open quantum systems, we
determine the degree of quantum decoherence of a harmonic oscillator
interacting with a thermal bath. It is found that the system manifests a
quantum decoherence which is more and more significant in time. We also
calculate the decoherence time and show that it has the same scale as the time
after which thermal fluctuations become comparable with quantum fluctuations.Comment: Talk at the XI International Conference on Quantum Optics
(ICQO'2006), May 2006, Minsk (Belarus), 9 page
Quantum decoherence in the theory of open systems
In the framework of the Lindblad theory for open quantum systems, we
determine the degree of quantum decoherence of a harmonic oscillator
interacting with a thermal bath. It is found that the system manifests a
quantum decoherence which is more and more significant in time. We calculate
also the decoherence time scale and analyze the transition from quantum to
classical behaviour of the considered system.Comment: 6 pages; talk at the 3rd International Workshop "Quantum Physics and
Communication" (QPC 2005), Dubna, Russia, 200
Dissipation in equations of motion of scalar fields
The methods of non-equilibrium quantum field theory are used to investigate
the possibility of representing dissipation in the equation of motion for the
expectation value of a scalar field by a friction term, such as is commonly
included in phenomenological inflaton equations of motion. A sequence of
approximations is exhibited which reduces the non-equilibrium theory to a set
of local evolution equations. However, the adiabatic solution to these
evolution equations which is needed to obtain a local equation of motion for
the expectation value is not well defined; nor, therefore, is the friction
coefficient. Thus, a non-equilibrium treatment is essential, even for a system
that remains close to thermal equilibrium, and the formalism developed here
provides one means of achieving this numerically.Comment: 17 pages, 5 figure
The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere
We derive the differential equation governing the asymptotic quasi-stationary
states of the two dimensional plasma immersed in a strong confining magnetic
field and of the planetary atmosphere. These two systems are related by the
property that there is an intrinsic constant length: the Larmor radius and
respectively the Rossby radius and a condensate of the vorticity field in the
unperturbed state related to the cyclotronic gyration and respectively to the
Coriolis frequency. Although the closest physical model is the
Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related
to the system consisting of a discrete set of point-like vortices interacting
in plane by a short range potential. A field-theoretical formalism is developed
for describing the continuous version of this system. The action functional can
be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the
asymptotic states) but the minimum energy is no more topological and the
asymptotic structures appear to be non-stationary, which is a major difference
with respect to traditional topological vortex solutions. Versions of this
field theory are discussed and we find arguments in favor of a particular form
of the equation. We comment upon the significant difference between the CHM
fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex
models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms
of the equatio
Classical Fields Near Thermal Equilibrium
We discuss the classical limit for the long-distance (``soft'') modes of a
quantum field when the hard modes of the field are in thermal equilibrium. We
address the question of the correct semiclassical dynamics when a momentum
cut-off is introduced. Higher order contributions leads to a stochastic
interpretation for the effective action in analogy to Quantum Brownian Motion,
resulting in dissipation and decoherence for the evolution of the soft modes.
Particular emphasis is put on the understanding of dissipation. Our discussion
focuses mostly on scalar fields, but we make some remarks on the extension to
gauge theories.Comment: REVTeX, 6 figure
Remote Participation for Plasma Experiments on the Mini-RT Device by Use of SuperSINET System
Universe Reheating after Inflation
We study the problem of scalar particle production after inflation by a
rapidly oscillating inflaton field. We use the framework of the chaotic
inflation scenario with quartic and quadratic inflaton potentials. Particular
attention is paid to parametric resonance phenomena which take place in the
presence of the quickly oscillating inflaton field. We have found that in the
region of applicability of perturbation theory the effects of parametric
resonance are crucial, and estimates based on first order Born approximation
often underestimate the particle production. In the case of the quartic
inflaton potential , the particle production
process is very efficient even for small values of coupling constants. The
reheating temperature of the universe in this case is times larger than the corresponding estimates based
on first order Born approximation. In the case of the quadratic inflaton
potential the reheating process depends crucially on the type of coupling
between the inflaton and the other scalar field and on the magnitudes of the
coupling constants. If the inflaton coupling to fermions and its linear (in
inflaton field) coupling to scalar fields are suppressed, then, as previously
discussed by Kofman, Linde and Starobinsky (see e.g. Ref. 13), the inflaton
field will eventually decouple from the rest of the matter, and the residual
inflaton oscillations may provide the (cold) dark matter of the universe. In
the case of the quadratic inflaton potential we obtain the lowest and the
highest possible bounds on the effective energy density of the inflaton field
when it freezes out.Comment: 40 pages, Preprint BROWN-HET-957 (revised version, some mistakes
corrected), uses phyzz
Theory of Ferromagnetism in Ca1-xLaxB6
Novel ferromagnetism in CaLaB is studied in terms of the
Ginzburg-Landau theory for excitonic order parameters, taking into account
symmetry of the wavefunctions. We found that the minima of the free energy
break both inversion and time-reversal symmetries, while the product of these
two remains preserved. This explains various novelties of the ferromagnetism
and predicts a number of magnetic properties, including the magnetoelectric
effect, which can be tested experimentally.Comment: 5 pages, accepted for publication in Phys.Rev.Let
Can dark matter be a Bose-Einstein condensate?
We consider the possibility that the dark matter, which is required to
explain the dynamics of the neutral hydrogen clouds at large distances from the
galactic center, could be in the form of a Bose-Einstein condensate. To study
the condensate we use the non-relativistic Gross-Pitaevskii equation. By
introducing the Madelung representation of the wave function, we formulate the
dynamics of the system in terms of the continuity equation and of the
hydrodynamic Euler equations. Hence dark matter can be described as a
non-relativistic, Newtonian Bose-Einstein gravitational condensate gas, whose
density and pressure are related by a barotropic equation of state. In the case
of a condensate with quartic non-linearity, the equation of state is polytropic
with index . To test the validity of the model we fit the Newtonian
tangential velocity equation of the model with a sample of rotation curves of
low surface brightness and dwarf galaxies, respectively. We find a very good
agreement between the theoretical rotation curves and the observational data
for the low surface brightness galaxies. The deflection of photons passing
through the dark matter halos is also analyzed, and the bending angle of light
is computed. The bending angle obtained for the Bose-Einstein condensate is
larger than that predicted by standard general relativistic and dark matter
models. Therefore the study of the light deflection by galaxies and the
gravitational lensing could discriminate between the Bose-Einstein condensate
dark matter model and other dark matter models.Comment: 20 pages, 7 figures, accepted for publication in JCAP, references
adde
- …
