3,626 research outputs found
Local virial relation and velocity anisotropy for collisionless self-gravitating systems
The collisionless quasi-equilibrium state realized after the cold collapse of
self-gravitating systems has two remarkable characters. One of them is the
linear temperature-mass (TM) relation, which yields a characteristic
non-Gaussian velocity distribution. Another is the local virial (LV) relation,
the virial relation which holds even locally in collisionless systems through
phase mixing such as cold-collapse. A family of polytropes are examined from a
view point of these two characters. The LV relation imposes a strong constraint
on these models: only polytropes with index with a flat boundary
condition at the center are compatible with the numerical results, except for
the outer region. Using the analytic solutions based on the static and
spherical Jeans equation, we show that this incompatibility in the outer region
implies the important effect of anisotropy of velocity dispersion. Furthermore,
the velocity anisotropy is essential in explaining various numerical results
under the condition of the local virial relation.Comment: 8 pages, 5 figures, Proceedings of CN-Kyoto International Workshop on
Complexity and Nonextensivity; added a reference for section
Classicalization of Quantum Fluctuation in Inflationary Universe
We discuss the classicalization of a quantum state induced by an environment
in the inflationary stage of the universe. The classicalization is necessary
for the homogeneous ground sate to become classical non-homogeneous one
accompanied with the statistical fluctuation, which is a plausible candidate
for the seeds of structure formation. Using simple models, we show that i) the
two classicalization criteria, the classical correlation and quantum
decoherence, are simultaneously satisfied by the environment and that ii) the
power spectrum of the resultant statistical fluctuation depends upon the detail
of the classicalization process. Especially, the result ii) means that, taking
account of the classicalization process, the inflationary scenario does not
necessarily predict the unique spectrum which is usually believed.Comment: 24 pages, Latex, 2 Postscript figure
Friction in inflaton equations of motion
The possibility of a friction term in the equation of motion for a scalar
field is investigated in non-equilibrium field theory. The results obtained
differ greatly from existing estimates based on linear response theory, and
suggest that dissipation is not well represented by a term of the form
.Comment: 4 pages, 2 figures, RevTex4. An obscurity in the original version has
been clarifie
Numerical investigation of friction in inflaton equations of motion
The equation of motion for the expectation value of a scalar quantum field
does not have the local form that is commonly assumed in studies of
inflationary cosmology. We have recently argued that the true, temporally
non-local equation of motion does not possess a time-derivative expansion and
that the conversion of inflaton energy into particles is not, in principle,
described by the friction term estimated from linear response theory. Here, we
use numerical methods to investigate whether this obstacle to deriving a local
equation of motion is purely formal, or of some quantitative importance. Using
a simple scalar-field model, we find that, although the non-equilibrium
evolution can exhibit significant damping, this damping is not well described
by the local equation of motion obtained from linear response theory. It is
possible that linear response theory does not apply to the situation we study
only because thermalization turns out to be slow, but we argue that that the
large discrepancies we observe indicate a failure of the local approximation at
a more fundamental level.Comment: 13 pages, 7 figure
Liquid phase epitaxy of GaAlAs on GaAs substrates with fine surface corrugations
Liquid phase epitaxy of GaAlAs was performed on GaAs fine surface corrugations. By optimizing the growth conditions, GaAlAs layers were grown successfully with only minimal meltback
Quantum decoherence of the damped harmonic oscillator
In the framework of the Lindblad theory for open quantum systems, we
determine the degree of quantum decoherence of a harmonic oscillator
interacting with a thermal bath. It is found that the system manifests a
quantum decoherence which is more and more significant in time. We also
calculate the decoherence time and show that it has the same scale as the time
after which thermal fluctuations become comparable with quantum fluctuations.Comment: Talk at the XI International Conference on Quantum Optics
(ICQO'2006), May 2006, Minsk (Belarus), 9 page
Quantum decoherence in the theory of open systems
In the framework of the Lindblad theory for open quantum systems, we
determine the degree of quantum decoherence of a harmonic oscillator
interacting with a thermal bath. It is found that the system manifests a
quantum decoherence which is more and more significant in time. We calculate
also the decoherence time scale and analyze the transition from quantum to
classical behaviour of the considered system.Comment: 6 pages; talk at the 3rd International Workshop "Quantum Physics and
Communication" (QPC 2005), Dubna, Russia, 200
- …