24 research outputs found

    Recomendações para o registro/interpretação do mapeamento topográfico do eletrencefalograma e potenciais evocados: Parte II: Correlações clínicas

    Full text link

    PER1 Is Required for GPI-Phospholipase A(2) Activity and Involved in Lipid Remodeling of GPI-anchored Proteins

    No full text
    Glycosylphoshatidylinositol (GPI) anchors are remodeled during their transport to the cell surface. Newly synthesized proteins are transferred to a GPI anchor, consisting of diacylglycerol with conventional C16 and C18 fatty acids, whereas the lipid moiety in mature GPI-anchored proteins is exchanged to either diacylglycerol containing a C26:0 fatty acid in the sn-2 position or ceramide in Saccharomyces cerevisiae. Here, we report on PER1, a gene encoding a protein that is required for the GPI remodeling pathway. We found that GPI-anchored proteins could not associate with the detergent-resistant membranes in per1Δ cells. In addition, the mutant cells had a defect in the lipid remodeling from normal phosphatidylinositol (PI) to a C26 fatty acid–containing PI in the GPI anchor. In vitro analysis showed that PER1 is required for the production of lyso-GPI, suggesting that Per1p possesses or regulates the GPI-phospholipase A(2) activity. We also found that human PERLD1 is a functional homologue of PER1. Our results demonstrate for the first time that PER1 encodes an evolutionary conserved component of the GPI anchor remodeling pathway, highlighting the close connection between the lipid remodeling of GPI and raft association of GPI-anchored proteins

    Fatty Acid Remodeling of GPI-anchored Proteins Is Required for Their Raft Association

    No full text
    Whereas most of the cellular phosphatidylinositol (PI) contain unsaturated fatty chains and are excluded from rafts, GPI-anchored proteins (APs) unusually contain two saturated fatty chains in their PI moiety, and they are typically found within lipid rafts. However, the origin of the saturated chains and whether they are essential for raft association are unclear. Here, we report that GPI-APs, with two saturated fatty chains, are generated from those bearing an unsaturated chain by fatty acid remodeling that occurs most likely in the Golgi and requires post-GPI-attachment to proteins (PGAP)2 and PGAP3. The surface GPI-APs isolated from the PGAP2 and -3 double-mutant Chinese hamster ovary (CHO) cells had unsaturated chains, such as oleic, arachidonic, and docosatetraenoic acids in the sn-2 position, whereas those from wild-type CHO cells had exclusively stearic acid, a saturated chain, indicating that the sn-2 chain is exchanged to a saturated chain. We then assessed the association of GPI-APs with lipid rafts. Recovery of unremodeled GPI-APs from the double-mutant cells in the detergent-resistant membrane fraction was very low, indicating that GPI-APs become competent to be incorporated into lipid rafts by PGAP3- and PGAP2-mediated fatty acid remodeling. We also show that the remodeling requires the preceding PGAP1-mediated deacylation from inositol of GPI-APs in the endoplasmic reticulum
    corecore