1,477 research outputs found
HI ``Tails'' from Cometary Globules in IC1396
IC 1396 is a relatively nearby (750 pc), large (>2 deg), HII region ionized
by a single O6.5V star and containing bright-rimmed cometary globules. We have
made the first arcmin resolution images of atomic hydrogen toward IC 1396, and
have found remarkable ``tail''-like structures associated with some of the
globules and extending up to 6.5 pc radially away from the central ionizing
star. These HI ``tails'' may be material which has been ablated from the
globule through ionization and/or photodissociation and then accelerated away
from the globule by the stellar wind, but which has since drifted into the
``shadow'' of the globules.
This report presents the first results of the Galactic Plane Survey Project
recently begun by the Dominion Radio Astrophysical Observatory.Comment: 11 pages, 5 postscript figures, uses aaspp4.sty macros, submitted in
uuencoded gzipped tar format, accepted for publication in Astrophysical
Journal Letters, colour figures available at
http://www.drao.nrc.ca/~schieven/news_sep95/ic1396.htm
Melting curve and Hugoniot of molybdenum up to 400 GPa by ab initio simulations
We report ab initio calculations of the melting curve and Hugoniot of
molybdenum for the pressure range 0-400 GPa, using density functional theory
(DFT) in the projector augmented wave (PAW) implementation. We use the
``reference coexistence'' technique to overcome uncertainties inherent in
earlier DFT calculations of the melting curve of Mo. Our calculated melting
curve agrees well with experiment at ambient pressure and is consistent with
shock data at high pressure, but does not agree with the high pressure melting
curve from static compression experiments. Our calculated P(V) and T(P)
Hugoniot relations agree well with shock measurements. We use calculations of
phonon dispersion relations as a function of pressure to eliminate some
possible interpretations of the solid-solid phase transition observed in shock
experiments on Mo.Comment: 8 pages, 6 figure
Cosmological Consequences of Slow-Moving Bubbles in First-Order Phase Transitions
In cosmological first-order phase transitions, the progress of true-vacuum
bubbles is expected to be significantly retarded by the interaction between the
bubble wall and the hot plasma. We examine the evolution and collision of
slow-moving true-vacuum bubbles. Our lattice simulations indicate that phase
oscillations, predicted and observed in systems with a local symmetry and with
a global symmetry where the bubbles move at speeds less than the speed of
light, do not occur inside collisions of slow-moving local-symmetry bubbles. We
observe almost instantaneous phase equilibration which would lead to a decrease
in the expected initial defect density, or possibly prevent defects from
forming at all. We illustrate our findings with an example of defect formation
suppressed in slow-moving bubbles. Slow-moving bubble walls also prevent the
formation of `extra defects', and in the presence of plasma conductivity may
lead to an increase in the magnitude of any primordial magnetic field formed.Comment: 10 pages, 7 figures, replaced with typos corrected and reference
added. To appear in Phys. Rev.
Effective action and motion of a cosmic string
We examine the leading order corrections to the Nambu effective action for
the motion of a cosmic string, which appear at fourth order in the ratio of the
width to radius of curvature of the string. We determine the numerical
coefficients of these extrinsic curvature corrections, and derive the equations
of motion of the worldsheet. Using these equations, we calculate the
corrections to the motion of a collapsing loop, a travelling wave, and a
helical breather. From the numerical coefficients we have calculated, we
discuss whether the string motion can be labelled as `rigid' or `antirigid,'
and hence whether cusp or kink formation might be suppressed or enhanced.Comment: 24 pages revtex, 12 figure
The equation of state of solid nickel aluminide
The pressure-volume-temperature equation of state of the intermetallic
compound NiAl was calculated theoretically, and compared with experimental
measurements. Electron ground states were calculated for NiAl in the CsCl
structure, using density functional theory, and were used to predict the cold
compression curve and the density of phonon states. The Rose form of
compression curve was found to reproduce the ab initio calculations well in
compression but exhibited significant deviations in expansion. A
thermodynamically-complete equation of state was constructed for NiAl. Shock
waves were induced in crystals of NiAl by the impact of laser-launched Cu
flyers and by launching NiAl flyers into transparent windows of known
properties. The TRIDENT laser was used to accelerate the flyers to speeds
between 100 and 600m/s. Point and line-imaging laser Doppler velocimetry was
used to measure the acceleration of the flyer and the surface velocity history
of the target. The velocity histories were used to deduce the stress state, and
hence states on the principal Hugoniot and the flow stress. Flyers and targets
were recovered from most experiments. The effect of elasticity and plastic flow
in the sample and window was assessed. The ambient isotherm reproduced static
compression data very well, and the predicted Hugoniot was consistent with
shock compression data
Recommended from our members
Curie: Constraining Solar System Bombardment Using In Situ Radiometric Dating
The Curie mission would constrain the existence of the putative cataclysm by determining the age of samples directly sourced from the impact melt sheet of a major pre-Imbrium lunar basin. The measurements would also enable further understanding of lunar evolution by characterizing new lunar lithologies far from the Apollo and Luna landing sites, including the very low-Ti basalts in Mare Crisium and potential olivine rich lithologies in the margins of both Mare Nectaris and Mars Crisium. Equipped with a mass spectrometer and a LIBS, Curie would also be well-placed to survey volatile components of the lunar regolith, including surface-bound hydrogen
Multiwavelength Observations of a Flare from Markarian 501
We present multiwavelength observations of the BL Lacertae object Markarian
501 (Mrk 501) in 1997 between April 8 and April 19. Evidence of correlated
variability is seen in very high energy (VHE, E > 350 GeV) gamma-ray
observations taken with the Whipple Observatory gamma-ray telescope, data from
the Oriented Scintillation Spectrometer Experiment of the Compton Gamma-Ray
Observatory, and quicklook results from the All-Sky Monitor of the Rossi X-ray
Timing Explorer while the Energetic Gamma-Ray Experiment Telescope did not
detect Mrk 501. Short term optical correlations are not conclusive but the
U-band flux observed with the 1.2m telescope of the Whipple Observatory was 10%
higher than in March. The average energy output of Mrk 501 appears to peak in
the 2 keV to 100 keV range suggesting an extension of the synchrotron emission
to at least 100 keV, the highest observed in a blazar and ~100 times higher
than that seen in the other TeV-emitting BL Lac object, Mrk 421. The VHE
gamma-ray flux observed during this period is the highest ever detected from
this object. The VHE gamma-ray energy output is somewhat lower than the 2-100
keV range but the variability amplitude is larger. The correlations seen here
do not require relativistic beaming of the emission unless the VHE spectrum
extends to >5 TeV.Comment: 10 pages, 2 figures, accepted for publication in ApJ Letter
Four-dimensional pure compact U(1) gauge theory on a spherical lattice
We investigate the confinement-Coulomb phase transition in the
four-dimensional (4D) pure compact U(1) gauge theory on spherical lattices. The
action contains the Wilson coupling beta and the double charge coupling gamma.
The lattice is obtained from the 4D surface of the 5D cubic lattice by its
radial projection onto a 4D sphere, and made homogeneous by means of
appropriate weight factors for individual plaquette contributions to the
action. On such lattices the two-state signal, impeding the studies of this
theory on toroidal lattices, is absent for gamma le 0. Furthermore, here a
consistent finite-size scaling behavior of several bulk observables is found,
with the correlation length exponent nu in the range nu = 0.35 - 40. These
observables include Fisher zeros, specific-heat and cumulant extrema as well as
pseudocritical values of beta at fixed gamma. The most reliable determination
of nu by means of the Fisher zeros gives nu = 0.365(8). The phase transition at
gamma le 0 is thus very probably of 2nd order and belongs to the universality
class of a non-Gaussian fixed point.Comment: 40 pages, LaTeX, 12 figure
Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum
This manuscript explores the apparent discrepancy between experimental data
and theoretical calculations of the lattice resistance of bcc tantalum. We
present the first results for the temperature dependence of the Peierls stress
in this system and the first ab initio calculation of the zero-temperature
Peierls stress to employ periodic boundary conditions, which are those best
suited to the study of metallic systems at the electron-structure level. Our ab
initio value for the Peierls stress is over five times larger than current
extrapolations of experimental lattice resistance to zero-temperature. Although
we do find that the common techniques for such extrapolation indeed tend to
underestimate the zero-temperature limit, the amount of the underestimation
which we observe is only 10-20%, leaving open the possibility that mechanisms
other than the simple Peierls stress are important in controlling the process
of low temperature slip.Comment: 12 pages and 9 figure
- âŠ