13 research outputs found

    Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations

    Full text link
    Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the “monitoring” of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously “control” and “monitor” chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen–antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth

    Non-covalent Monolayer-Piercing Anchoring of Lipophilic Nucleic Acids:Preparation, Characterization, and Sensing Applications

    Full text link
    Functional interfaces of biomolecules and inorganic substrates like semiconductor materials are of utmost importance for the development of highly sensitive biosensors and microarray technology. However, there is still a lot of room for improving the techniques for immobilization of biomolecules, in particular nucleic acids and proteins. Conventional anchoring strategies rely on attaching biomacromolecules via complementary functional groups, appropriate bifunctional linker molecules, or non-covalent immobilization via electrostatic interactions. In this work, we demonstrate a facile, new, and general method for the reversible non-covalent attachment of amphiphilic DNA probes containing hydrophobic units attached to the nucleobases (lipid-DNA) onto SAM-modified gold electrodes, silicon semiconductor surfaces, and glass substrates. We show the anchoring of well-defined amounts of lipid-DNA onto the surface by insertion of their lipid tails into the hydrophobic monolayer structure. The surface coverage of DNA molecules can be conveniently controlled by modulating the initial concentration and incubation time. Further control over the DNA layer is afforded by the additional external stimulus of temperature. Heating the DNA-modified surfaces at temperatures > 80 degrees C leads to the release of the lipid-DNA structures from the surface without harming the integrity of the hydrophobic SAMs. These supramolecular DNA layers can be further tuned by anchoring onto a mixed SAM containing hydrophobic molecules of different lengths, rather than a homogeneous SAM. Immobilization of lipid-DNA on such SAMs has revealed that the surface density of DNA probes is highly dependent on the composition of the surface layer and the structure of the lipid-DNA. The formation of the lipid-DNA sensing layers was monitored and characterized by numerous techniques including X-ray photoelectron spectroscopy, quartz crystal microbalance, ellipsometry, contact angle measurements, atomic force microscopy, and confocal fluorescence imaging. Finally, this new DNA modification strategy was applied for the sensing of target DNAs using silicon-nanowire field-effect transistor device arrays, showing a high degree of specificity toward the complementary DNA target, as well as single-base mismatch selectivity

    Biorecognition Layer Engineering: Overcoming Screening Limitations of Nanowire-Based FET Devices

    Full text link
    Detection of biological species is of great importance to numerous areas of medical and life sciences from the diagnosis of diseases to the discovery of new drugs. Essential to the detection mechanism is the transduction of a signal associated with the specific recognition of biomolecules of interest. Nanowire-based electrical devices have been demonstrated as a powerful sensing platform for the highly sensitive detection of a wide-range of biological and chemical species. Yet, detecting biomolecules in complex biosamples of high ionic strength (>100 mM) is severely hampered by ionic screening effects. As a consequence, most of existing nanowire sensors operate under low ionic strength conditions, requiring ex situ biosample manipulation steps, that is, desalting processes. Here, we demonstrate an effective approach for the direct detection of biomolecules in untreated serum, based on the fragmentation of antibody-capturing units. Size-reduced antibody fragments permit the biorecognition event to occur in closer proximity to the nanowire surface, falling within the charge-sensitive Debye screening length. Furthermore, we explored the effect of antibody surface coverage on the resulting detection sensitivity limit under the high ionic strength conditions tested and found that lower antibody surface densities, in contrary to high antibody surface coverage, leads to devices of greater sensitivities. Thus, the direct and sensitive detection of proteins in untreated serum and blood samples was effectively performed down to the sub-pM concentration range without the requirement of biosamples manipulation

    Monolithic Integration of a Silicon Nanowire Field-Effect Transistors Array on a Complementary Metal-Oxide Semiconductor Chip for Biochemical Sensor Applications

    Full text link
    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring <i>I</i>–<i>V</i> curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs

    Multicolor Spectral-Specific Silicon Nanodetectors based on Molecularly Embedded Nanowires

    Full text link
    Silicon-based photodetectors cannot distinguish between different wavelengths. Therefore, these detectors relay on color-specific filters to achieve color separation. Color filters add complexity to color sensitive device fabrication, and hinder miniaturization of such devices. Here, we report an ultrasmall (as small as ∌20 nm by 300 nm), red-green-blue-violet (RGBV) filter-free spectrally gated field effect transistor (SGFET) detectors. These photodetectors are based on organic-silicon nanowire hybrid FET devices, capable of detecting specific visible wavelength spectrum with full width at half-maxima (fwhm) under 100 nm. Each SGFET is controlled by a distinctive RGBV spectral range, according to its specific organic fluorophore functionalization. The spectral-specific RGBV detection is accomplished via covalent attachment of different fluorophores. The fluorophore molecules inject electrons into the nanowire structure as a result of light absorption at the appropriate RGBV spectral range. These photoinduced electrons modify the occupancies of the oxide’s surface states, shifting the device threshold voltage, thus changing its conductivity, and functioning as a negative stress bias in a p-type SiNW FETs. A positive biasing can be achieved via UV light-induced ionization, which leads to detrapping and translocation of electrons at the oxide layer. Furthermore, a novel theoretical model on the mechanism of action of these devices was developed. Also, we show that suspended SGFETs can function as nonvolatile memory elements, which unlike fast-relaxing on-surface SGFETs, can store discrete “on” (RGBV illumination) and “off” (UV illumination) states for several days at ambient conditions. We also demonstrate a unique single-nanowire multicolor photodetector, enabling in principle a broad spectral detection over a single silicon nanowire element. These highly compact, spectral-controlled nanodevices have the potential to serve in various future novel optoelectric applications

    Highly Ordered Large-Scale Neuronal Networks of Individual Cells – Toward Single Cell to 3D Nanowire Intracellular Interfaces

    Full text link
    The use of artificial, prepatterned neuronal networks in vitro is a promising approach for studying the development and dynamics of small neural systems in order to understand the basic functionality of neurons and later on of the brain. The present work presents a high fidelity and robust procedure for controlling neuronal growth on substrates such as silicon wafers and glass, enabling us to obtain mature and durable neural networks of individual cells at designed geometries. It offers several advantages compared to other related techniques that have been reported in recent years mainly because of its high yield and reproducibility. The procedure is based on surface chemistry that allows the formation of functional, tailormade neural architectures with a micrometer high-resolution partition, that has the ability to promote or repel cells attachment. The main achievements of this work are deemed to be the creation of a large scale neuronal network at low density down to individual cells, that develop intact typical neurites and synapses without any glia-supportive cells straight from the plating stage and with a relatively long term survival rate, up to 4 weeks. An important application of this method is its use on 3D nanopillars and 3D nanowire-device arrays, enabling not only the cell bodies, but also their neurites to be positioned directly on electrical devices and grow with registration to the recording elements underneath

    Non-covalent Monolayer-Piercing Anchoring of Lipophilic Nucleic Acids: Preparation, Characterization, and Sensing Applications

    Full text link
    Functional interfaces of biomolecules and inorganic substrates like semiconductor materials are of utmost importance for the development of highly sensitive biosensors and microarray technology. However, there is still a lot of room for improving the techniques for immobilization of biomolecules, in particular nucleic acids and proteins. Conventional anchoring strategies rely on attaching biomacromolecules via complementary functional groups, appropriate bifunctional linker molecules, or non-covalent immobilization via electrostatic interactions. In this work, we demonstrate a facile, new, and general method for the reversible non-covalent attachment of amphiphilic DNA probes containing hydrophobic units attached to the nucleobases (lipid–DNA) onto SAM-modified gold electrodes, silicon semiconductor surfaces, and glass substrates. We show the anchoring of well-defined amounts of lipid–DNA onto the surface by insertion of their lipid tails into the hydrophobic monolayer structure. The surface coverage of DNA molecules can be conveniently controlled by modulating the initial concentration and incubation time. Further control over the DNA layer is afforded by the additional external stimulus of temperature. Heating the DNA-modified surfaces at temperatures >80 °C leads to the release of the lipid–DNA structures from the surface without harming the integrity of the hydrophobic SAMs. These supramolecular DNA layers can be further tuned by anchoring onto a mixed SAM containing hydrophobic molecules of different lengths, rather than a homogeneous SAM. Immobilization of lipid–DNA on such SAMs has revealed that the surface density of DNA probes is highly dependent on the composition of the surface layer and the structure of the lipid–DNA. The formation of the lipid–DNA sensing layers was monitored and characterized by numerous techniques including X-ray photoelectron spectroscopy, quartz crystal microbalance, ellipsometry, contact angle measurements, atomic force microscopy, and confocal fluorescence imaging. Finally, this new DNA modification strategy was applied for the sensing of target DNAs using silicon-nanowire field-effect transistor device arrays, showing a high degree of specificity toward the complementary DNA target, as well as single-base mismatch selectivity
    corecore