23,110 research outputs found

    Gamma-Ray Burst Spectral Features: Interpretation as X-ray Emission From A Photoionized Plasma

    Full text link
    Numerous reports have been made of features, either in emission or absorption, in the 10 - 1000 keV spectra of some gamma-ray bursts. Originally interpreted in the context of Galactic neutron star models as cyclotron line emission and e+−e−e^+ - e^- annihilation features, the recent demonstration that the majority of GRBs lie at cosmological distances make these explanations unlikely. In this letter, we adopt a relativistic fireball model for cosmological GRBs in which dense, metal rich blobs or filaments of plasma are entrained in the relativistic outflow. In the context of this model, we investigate the conditions under which broadband features, similar to those detected, can be observed. We find a limited region of parameter space capable of reproducing the observed GRB spectra. Finally, we discuss possible constraints further high-energy spectral observations could place on fireball model parameters.Comment: Accepted for publication in Astrophysical Journal Letters Four pages, 2 figure

    Multi-Orbital Molecular Compound (TTM-TTP)I_3: Effective Model and Fragment Decomposition

    Full text link
    The electronic structure of the molecular compound (TTM-TTP)I_3, which exhibits a peculiar intra-molecular charge ordering, has been studied using multi-configuration ab initio calculations. First we derive an effective Hubbard-type model based on the molecular orbitals (MOs) of TTM-TTP; we set up a two-orbital Hamiltonian for the two MOs near the Fermi energy and determine its full parameters: the transfer integrals, the Coulomb and exchange interactions. The tight-binding band structure obtained from these transfer integrals is consistent with the result of the direct band calculation based on density functional theory. Then, by decomposing the frontier MOs into two parts, i.e., fragments, we find that the stacked TTM-TTP molecules can be described by a two-leg ladder model, while the inter-fragment Coulomb energies are scaled to the inverse of their distances. This result indicates that the fragment picture that we proposed earlier [M.-L. Bonnet et al.: J. Chem. Phys. 132 (2010) 214705] successfully describes the low-energy properties of this compound.Comment: 5 pages, 4 figures, published versio

    Structures and Electromagnetic Properties of New Metal-Ordered Manganites; RBaMn_{2}O_{6} (R = Y and Rare Earth Elements)

    Full text link
    New metal-ordered manganites RBaMn_{2}O_{6} have been synthesized and investigated in the structures and electromagnetic properties. RBaMn_{2}O_{6} can be classified into three groups from the structural and electromagnetic properties. The first group (R = La, Pr and Nd) has a metallic ferromagnetic transition, followed by an A-type antiferromagnetic transition in PrBaMn_{2}O_{6}. The second group (R = Sm, Eu and Gd) exhibits a charge-order transition, followed by an antiferromagnetic long range ordering. The third group (R = Tb, Dy and Ho) shows successive three phase transitions, the structural, charge/orbital-order and magnetic transitions, as observed in YBaMn_{2}O_{6}. Comparing to the metal-disordered manganites (R^{3+}_{0.5}A^{2+}_{0.5})MnO_{3}, two remarkable features can be recognized in RBaMn_{2}O_{6}; (1) relatively high charge-order transition temperature and (2) the presence of structural transition above the charge-order temperature in the third group. We propose a possible orbital ordering at the structural transition, that is a possible freezing of the orbital, charge and spin degrees of freedom at the independent temperatures in the third group. These features are closely related to the peculiar structure that the MnO_{2} square-lattice is sandwiched by the rock-salt layers of two kinds, RO and BaO with extremely different lattice-sizes.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Direct observation of the proliferation of ferroelectric loop domains and vortex-antivortex pairs

    Full text link
    We discovered "stripe" patterns of trimerization-ferroelectric domains in hexagonal REMnO3 (RE=Ho, ---, Lu) crystals (grown below ferroelectric transition temperatures (Tc), reaching up to 1435 oC), in contrast with the vortex patterns in YMnO3. These stripe patterns roughen with the appearance of numerous loop domains through thermal annealing just below Tc, but the stripe domain patterns turn to vortex-antivortex domain patterns through a freezing process when crystals cross Tc even though the phase transition appears not to be Kosterlitz-Thouless-type. The experimental systematics are compared with the results of our six-state clock model simulation and also the Kibble-Zurek Mechanism for trapped topological defects

    Frustrated Spin System in theta-(BEDT-TTF)_2RbZn(SCN)_4

    Full text link
    The origin of the spin gap behavior in the low-temperature dimerized phase of theta-(BEDT-TTF)_2RbZn(SCN)_4 has been theoretically studied based on the Hartree-Fock approximation for the on-site Coulomb interaction at absolute zero. Calculations show that, in the parameter region considered to be relevant to this compound, antiferromagnetic ordering is stabilized between dimers consisting of pairs of molecules coupled with the largest transfer integral. Based on this result an effective localized spin 1/2 model is constructed which indicates the existence of the frustration among spins. This frustration may result in the formation of spin gap.Comment: 4 pages, 5 figures, to be published in J. Phys. Soc. Jpn. 67 (1998) no.

    Dissipative bracing-based seismic retrofit hypothesis of an elevated water storage tank with R/C frame staging structure

    Get PDF
    A seismic performance assessment and supplemental damping-based retrofit study on a heritage reinforced concrete (R/C) elevated water storage tank is presented. The structure was built in the early 1930s as water supplier for the coal power plant of Santa Maria Novella Station in Florence, and is still in service. The tank has a R/C frame supporting structure and is currently used as water supplier for trains and platform services. The dynamic behavior of the fluid is simulated by a classical convective plus impulsive mass model, for which a discrete three-dimensional schematization is originally implemented in the finite element analysis. The time-history assessment enquiry highlights a remarkable plastic response of the frame structure under seismic action scaled at the maximum considered earthquake level. Based on these results, a retrofit hypothesis is proposed, consisting in the installation in the staging structure of a dissipative bracing (DB) system incorporating pressurized fluid viscous spring-dampers. The DB technology, studied by the first two authors during the last two decades by focusing on the numerical and analytical modeling, the experimental characterization and verification, the definition of design procedures, and the development of several applications to R/C and steel frame building structures, is explored for the first time within the study reported here for the seismic retrofit of elevated tanks. The mechanical parameters, design criteria and technical implementation details of the rehabilitation strategy are illustrated. The verification time-history analyses in protected conditions show that a substantial enhancement of the seismic response capacities of the structure is attained as compared to its original configuration, with little architectural intrusion, quick installation works and low costs
    • …
    corecore