5 research outputs found

    Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries

    No full text
    We reviewed results of SBRT treatment of 138 patients with medically inoperable stage I NSCLC treated during 1996 - 2003 at five different centres in Sweden and Denmark. Mean age was 74 years ( range 56 - 90) with 69 men and 72 women. SBRT was delivered using a 3D conformal multifield technique and a stereotactic body frame. Doses delivered were 30 - 48 Gy (65% isodose at the periphery of planning target volume, PTV) in 2 - 4 fractions. Equivalent dose in 2 Gy fractions (EQD2) was in the range of 50 - 100 Gy. Mean gross tumour volume (GTV) was 39 cm(3) (2 - 436), and planning target volume was 101 cm(3) (11 - 719). Overall response rate (CR, PR) was 61% (84/138). SD was noted in 36% (50/138). During a median follow-up period of 33 months (1 - 107), 16 (12%) local failures occurred, ten of which also included distant metastases. Local failure was associated with tumour size, target definition and central or pleura proximity. Distant metastases occurred in 25% (35/138) of the patients. Ninety-one ( 65%) patients died during follow-up of which 55 patients (60%) died of other causes than lung cancer. Three- and 5-year overall survival was 52 and 26% respectively. Lung cancer specific 3- and 5-year overall survival was 66 and 40% respectively. Fifty nine percent (83/138) of the patients had no side effects. Fourteen patients experienced grade 3 - 4 toxicity according to radiation therapy oncology group (RTOG). EQD2 (> v.s. < 55.6 Gy) showed a statistically significant benefit survival for the higher doses. SBRT for stage I NSCLC results in favourable local control not inferior to fractionated RT and with acceptable toxicity

    NTCP modelling of lung toxicity after SBRT comparing the universal survival curve and the linear quadratic model for fractionation correction

    No full text
    Background. In SBRT of lung tumours no established relationship between dose-volume parameters and the incidence of lung toxicity is found. The aim of this study is to compare the LQ model and the universal survival curve (USC) to calculate biologically equivalent doses in SBRT to see if this will improve knowledge on this relationship. Material and methods. Toxicity data on radiation pneumonitis grade 2 or more (RP2+) from 57 patients were used, 10.5% were diagnosed with RP2+. The lung DVHs were corrected for fractionation (LQ and USC) and analysed with the Lyman-Kutcher-Burman (LKB) model. In the LQ-correction alpha/beta = 3 Gy was used and the USC parameters used were: alpha/beta = 3 Gy, D-0 = 1.0 Gy, (n) over bar = 10, alpha = 0.206 Gy(-1) and d(T) = 5.8 Gy. In order to understand the relative contribution of different dose levels to the calculated NTCP the concept of fractional NTCP was used. This might give an insight to the questions of whether "high doses to small volumes" or "low doses to large volumes" are most important for lung toxicity. Results and Discussion. NTCP analysis with the LKB-model using parameters m = 0.4, D-50 = 30 Gy resulted for the volume dependence parameter (n) with LQ correction n = 0.87 and with USC correction n = 0.71. Using parameters m = 0.3, D-50 = 20 Gy n = 0.93 with LQ correction and n = 0.83 with USC correction. In SBRT of lung tumours, NTCP modelling of lung toxicity comparing models (LQ, USC) for fractionation correction, shows that low dose contribute less and high dose more to the NTCP when using the USC-model. Comparing NTCP modelling of SBRT data and data from breast cancer, lung cancer and whole lung irradiation implies that the response of the lung is treatment specific. More data are however needed in order to have a more reliable modelling

    Stereotactic body radiotherapy for medically inoperable patients with stage I non-small cell lung cancer - A first report of toxicity related to COPD/CVD in a non-randomized prospective phase II study

    No full text
    Background and Aims: In a retrospective study using stereotactic body radiotherapy (SBRT) in medically inoperable patients with stage I NSCLC we previously reported a local control rate of 88% utilizing a median dose of 15 Gy x 3. This report records the toxicity encountered in a prospective phase II trial, and its relation to coexisting chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Material and methods: Sixty patients were entered in the study between August 2003 and September 2005. Fifty-seven patients (T1 65%, T2 35%) with a median age of 75 years (59-87 years) were evaluable. The baseline mean FEV1% was 64% and median Karnofsky index was 80. A total dose of 45 Gy was delivered in three fractions at the 67% isodose of the PTV. Clinical, pulmonary and radiological evaluations were made at 6 weeks, 3, 6, 9, 12, 18, and 36 months post-SBRT. Toxicity was graded according to CTC v2.0 and performance status was graded according to the Karnofsky scale. Results: At a median follow-up of 23 months, 2 patients had relapsed locally. No grade 4 or 5 toxicity was reported. Grade 3 toxicity was seen in 12 patients (21%). There was no significant decline of FEV1% during follow-up. Low grade pneumonitis developed to the same extent in the CVD 3/17 (18%) and COPD 7/40 (18%) groups. The incidence of fibrosis was 9/17 (53%) and pleural effusions was 8/17 (47%) in the CVD group compared with 13/40 (33%) and 5/40 (13%) in the COPD group. Conclusion: SBRT for stage I NSCLC patients who are medically inoperable because of COPD and CVD results in a favourable local control rate with a low incidence of grade 3 and no grade 4 or 5 toxicity. (C) 2008 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 88 (2008) 359-367

    Outcome in a Prospective Phase II Trial of Medically Inoperable Stage I Non-Small-Cell Lung Cancer Patients Treated With Stereotactic Body Radiotherapy.

    No full text
    PURPOSE: The impact of stereotactic body radiotherapy (SBRT) on 3-year progression-free survival of medically inoperable patients with stage I non-small-cell lung cancer (NSCLC) was analyzed in a prospective phase II study. PATIENTS AND METHODS: Fifty seven patients with T1NOMO (70%) and T2N0M0 (30%) were included between August 2003 and September 2005 at seven different centers in Sweden, Norway, and Denmark and observed up to 36 months. SBRT was delivered with 15 Gy times three at the 67% isodose of the planning target volume. RESULTS: Progression-free survival at 3 years was 52%. Overall- and cancer-specific survival at 1, 2, and 3 years was 86%, 65%, 60%, and 93%, 88%, 88%, respectively. There was no statistically significant difference in survival between patients with T1 or T2 tumors. At a median follow-up of 35 months (range, 4 to 47 months), 27 patients (47%) were deceased, seven as a result of lung cancer and 20 as a result of concurrent disease. Kaplan-Meier estimated local control at 3 years was 92%. Local relapse was observed in four patients (7%). Regional relapse was observed in three patients (5%). Nine patients (16%) developed distant metastases. The estimated risk of all failure (local, regional, or distant metastases) was increased in patients with T2 (41%) compared with those with T1 (18%) tumors (P = .027). CONCLUSION: With a 3-year local tumor control rate higher than 90% with limited toxicity, SBRT emerges as state-of-the-art treatment for medically inoperable stage I NSCLC and may even challenge surgery in operable instances
    corecore