256 research outputs found
Symmetry and Electronic Structure of Noble Metal Nanoparticles and the Role of Relativity
High resolution photoelectron spectra of cold mass selected Cu_n-, Ag_n- and
Au_n- with n =53-58 have been measured at a photon energy of 6.42 eV. The
observed electron density of states is not the expected simple electron shell
structure, but seems to be strongly influenced by electron-lattice
interactions. Only Cu55- and Ag55- exhibit highly degenerate states. This is a
direct consequence of their icosahedral symmetry, as is confirmed by density
functional theory calculations. Neighboring sizes exhibit perturbed electronic
structures, as they are formed by removal or addition of atoms to the
icosahedron and therefore have lower symmetries. Gold clusters in the same size
range show completely different spectra with almost no degeneracy, which
indicates that they have structures of much lower symmetry. This behaviour is
related to strong relativistic bonding effects in gold, as demonstrated by ab
initio calculations for Au55-.Comment: 10 pages, 3 figure
All-optical attoclock: accessing exahertz dynamics of optical tunnelling through terahertz emission
The debate regarding attosecond dynamics of optical tunneling has so far been
focused on time delays associated with electron motion through the potential
barrier created by intense ionizing laser fields and the atomic core.
Compelling theoretical and experimental arguments have been put forward to
advocate the polar opposite views, confirming or refuting the presence of
tunnelling time delays. Yet, such delay, whether present or ot, is but a single
quantity characterizing the tunnelling wavepacket; the underlying dynamics are
richer. Here we propose to complement photo-electron detection with detecting
light, focusing on the so-called Brunel adiation -- the near-instantaneous
nonlinear optical response triggered by the tunnelling event. Using the
combination of single-color and two-color driving fields, we determine not only
the ionization delays, but also the re-shaping of the tunnelling wavepacket as
it emerges from the classically forbidden region. Our work introduces a new
type of attoclock for optical tunnelling, one that is based on measuring light
rather than photo-electrons. All-optical detection paves the way to
time-resolving multiphoton transitions across bandgaps in solids, on the
attosecond time-scale
Bio mit Gesicht - Erfolgschancen einer kundennahen und innovativen Marketingstrategie
Mangelndes Vertrauen in Bio-Produkte wirkt als eine zentrale Kaufbarriere. Mit der Marketingstrategie Bio mit Gesicht (BMG) soll die Anonymität von Produkten aufgehoben und Vertrauen geschaffen werden, indem die Erzeuger und Verarbeiter im Internet vorgestellt werden. Ziel des Projekts "Bio mit Gesicht – Erfolgschancen einer kundennahen und innovativen Marketingstrategie“ war es, die Markteinführung der Produktlinie BMG wissenschaftlich zu begleiten und praxisrelevante Aussagen über die Konzeption zukünftiger Marketingstrategien zu treffen. Dabei wurde im Rahmen einer quantitativen und einer qualitativen Studie untersucht, worauf das Vertrauen in Bio-Produkte grundsätzlich beruht und ob BMG geeignet ist, das Vertrauen in Bio-Produkte zu steigern.
Die Studien zeigen, dass die Kennzeichnung von Bio-Lebensmitteln mit Bio-Labels eine zentrale Rolle dabei spielt, wie Konsumenten deren Vertrauenswürdigkeit beurteilen. Bio-Produkte, die ein Verbandslabel aufweisen, genießen das höchste Vertrauen, gefolgt von staatlichen Labels. Trotz seines geringen Bekanntheitsgrads wirkt auch das BMG-Logo vertrauensbildend. Offenbar erweckt bereits allein das signalgebende Wort „bio“ im Label Vertrauen. Auch schaffen Einkaufsstätten Vertrauen, die aus Sicht der Konsumenten Bio-Produkte aus Überzeugung verkaufen. Regionalität erhöht ebenfalls die Vertrauenswürdigkeit eines Bio-Produkts signifikant. Am höchsten ist das Vertrauen in Bio-Lebensmittel unter Konsumenten, die Bio-Lebensmittel überwiegend in Bio-Läden kaufen.
Im Gegensatz zum BMG-Label steigert BMG als Rückverfolgbarkeitssystem via Internet das Vertrauen in Bio-Produkte derzeit kaum. Doch insbesondere durch die zunehmende Verbreitung von Smartphones und den damit verbundenen Vorteil, Produktinformationen noch vor dem Einkauf abrufen zu können, könnte die Bedeutung von BMG zukünftig steigern. Auch die wachsende Bedeutung von elektronischen Lesegeräten, mit denen sich Artikeldaten bereits während des Lebensmitteleinkaufs abrufen lassen, steigert das Potenzial von Rückverfolgbarkeitssystemen. Die Analyse der Zugriffszahlen zeigte zudem, dass in Zeiten eines Lebensmittelskandals (z.B. Dioxin in Eiern, EHEC) die Besucherzahlen auf der Internetseite von BMG deutlich steigen
Tank-Circuit Assisted Coupling Method for Sympathetic Laser Cooling
We discuss the coupling of the motion of two ion species in separate Penning traps via a common tank circuit. The enhancement of the coupling assisted by the tank circuit is demonstrated by an avoided crossing behavior measurement of the motional modes of two coupled ions. We propose an intermittent laser cooling method for sympathetic cooling and provide a theoretical description. The technique enables tuning of the coupling strength between two ion species in separate traps and thus allows for efficient sympathetic cooling of an arbitrary type of single ion for high-precision Penning-trap experiments
Measurement of the bound-electron g-factor difference in coupled ions
Quantum electrodynamics (QED) is one of the most fundamental theories of physics and has been shown to be in excellent agreement with experimental results. In particular, measurements of the electron’s magnetic moment (or g factor) of highly charged ions in Penning traps provide a stringent probe for QED, which allows testing of the standard model in the strongest electromagnetic fields. When studying the differences between isotopes, many common QED contributions cancel owing to the identical electron configuration, making it possible to resolve the intricate effects stemming from the nuclear differences. Experimentally, however, this quickly becomes limited, particularly by the precision of the ion masses or the magnetic field stability. Here we report on a measurement technique that overcomes these limitations by co-trapping two highly charged ions and measuring the difference in their g factors directly. We apply a dual Ramsey-type measurement scheme with the ions locked on a common magnetron orbit, separated by only a few hundred micrometres, to coherently extract the spin precession frequency difference. We have measured the isotopic shift of the bound-electron g factor of the isotopes 20Ne9+ and 22Ne9+ to 0.56-parts-per-trillion (5.6 × 10−13) precision relative to their g factors, an improvement of about two orders of magnitude compared with state-of-the-art techniques7. This resolves the QED contribution to the nuclear recoil, accurately validates the corresponding theory and offers an alternative approach to set constraints on new physics
Soliton compression and supercontinuum spectra in nonlinear diamond photonics
We numerically explore synthetic crystal diamond for realizing novel light
sources in ranges which are up to now difficult to achieve with other
materials, such as sub-10-fs pulse durations and challenging spectral ranges.
We assess the performance of on-chip diamond waveguides for controlling light
generation by means of nonlinear soliton dynamics. Tailoring the cross-section
of such diamond waveguides allows to design dispersion profiles with custom
zero-dispersion points and anomalous dispersion ranges exceeding an octave.
Various propagation dynamics, including supercontinuum generation by soliton
fission, can be realized in diamond photonics. In stark contrast to usual
silica-based optical fibers, where such processes occur on the scale of meters,
in diamond millimeter-scale propagation distances are sufficient. Unperturbed
soliton-dynamics prior to soliton fission allow to identify a pulse
self-compression scenario that promises record-breaking compression factors on
chip-size propagation lengths
- …