1 research outputs found

    Glutamate and taurine are increased in ventricular cerebrospinal fluid of severely brain-injured patients

    Full text link
    Glutamate contributes to secondary brain damage, resulting in cell swelling and brain edema. Under in vitro conditions, increased extracellular levels of the amino acid taurine reflect glutamate-induced osmotic cell swelling. In vivo, increases in cerebrospinal fluid (CSF) taurine could, therefore, unmask glutamate-mediated cytotoxic edema formation and possibly differentiate it from vasogenic edema. To test this hypothesis, ventricular CSF glutamate and taurine levels were measured in 28 severely brain-injured patients on days 1, 5, and 14 after trauma. Posttraumatic changes in CSF amino acids were investigated in regard to extent of tissue damage and alterations in brain edema as estimated by computerized tomography. On day 1, CSF glutamate and taurine levels were significantly increased in patients with subdural or epidural hematomas (8+/-0.8/71+/-12 microM), contusions (21+/-4.1/122+/-18 microM), and generalized brain edema (13+/-3.2/80+/-15 microM) compared to lumbar control CSF (1.3+/-0.1/12+/-1 microM; p < 0.001). CSF amino acids, however, did not reflect edema formation and resolution as estimated by computerized tomography. CSF taurine correlated positively with glutamate, eventually depicting glutamate-induced cell swelling. However, parallel neuronal release of taurine with its inhibitory function cannot be excluded. Thus, the sensitivity of taurine in unmasking cytotoxic edema formation is weakened by the inability in defining its origin and function under the conditions chosen in the present study. Overall, persisting pathologic ventricular CSF glutamate and taurine levels are highly suggestive of ongoing glial and neuronal impairment in humans following severe traumatic brain injury
    corecore