4,583 research outputs found
Electro-orientation and electrorotation of metal nanowires
The physical mechanisms responsible for the electrical orientation and electrical rotation of metal nanowires suspended in an electrolyte as a function of frequency of the applied ac electric field are examined theoretically and experimentally. The alignment of a nanowire in an ac field with a fixed direction is called electro-orientation. The induced constant rotation of a nanowire in a rotating electric field is called electrorotation. In both situations, the applied electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte interface, causing rotation due to the torque on the induced dipole, and also from induced-charge electro-osmotic flow around the particle. First, we describe the dipole theory that describes electro-orientation and electrorotation of perfectly polarizable metal rods. Second, based on a slender approximation, an analytical theory that describes induced-charge electro-orientation and electrorotation of metal nanowires is provided. Finally, experimental measurements of the electro-orientation and electrorotation of metal nanowires are presented and compared with theory, providing a comprehensive study of the relative importance between induced-dipole rotation and induced-charge electro-osmotic rotation
Electrothermal flow in Dielectrophoresis of Single-Walled Carbon Nanotubes
We theoretically investigate the impact of the electrothermal flow on the
dielectrophoretic separation of single-walled carbon nanotubes (SWNT). The
electrothermal flow is observed to control the motions of semiconducting SWNTs
in a sizeable domain near the electrodes under typical experimental conditions,
therefore helping the dielectrophoretic force to attract semiconducting SWNTs
in a broader range. Moreover, with the increase of the surfactant
concentration, the electrothermal flow is enhanced, and with the change of
frequency, the pattern of the electrothermal flow changes. It is shown that
under some typical experimental conditions of dielectrophoresis separation of
SWNTs, the electrothermal flow is a dominating factor in determining the motion
of SWNTs.Comment: 5 pages, 4 figures, Submitted to PR
Ac electrokinetics: a survey of sub-micrometre particle dynamics
Particles suspended in fluid exhibit motion when subjected to ac electric fields. The applied field results in forces on both the particles and the fluid, the study of which is referred to as ac electrokinetics. The ac electrokinetic techniques can be used for the controlled manipulation and characterization of particles, and the separation of mixtures. For sub-micrometre particles, Brownian motion is important and strong electric fields are required to overcome these effects. Planar micro-electrode arrays, fabricated using semiconductor manufacturing processes, can generate electric fields of the required strength from low potentials over a wide range of frequencies. This paper reviews and discusses sub-micrometre particle dynamics under the influence of dielectrophoretic and electrohydrodynamic forces. New experimental observations of the movement of sub-micrometre particles are also presented
Combining DC and AC electric fields with deterministic lateral displacement for micro- And nano-particle separation
This paper describes the behavior of particles in a deterministic lateral displacement (DLD) separation device with DC and AC electric fields applied orthogonal to the fluid flow. As proof of principle, we demonstrate tunable microparticle and nanoparticle separation and fractionation depending on both particle size and zeta potential. DLD is a microfluidic technique that performs size-based binary separation of particles in a continuous flow. Here, we explore how the application of both DC and AC electric fields (separate or together) can be used to improve separation in a DLD device. We show that particles significantly smaller than the critical diameter of the device can be efficiently separated by applying orthogonal electric fields. Following the application of a DC voltage, Faradaic processes at the electrodes cause local changes in medium conductivity. This conductivity change creates an electric field gradient across the channel that results in a nonuniform electrophoretic velocity orthogonal to the primary flow direction. This phenomenon causes particles to focus on tight bands as they flow along the channel countering the effect of particle diffusion. It is shown that the final lateral displacement of particles depends on both particle size and zeta potential. Experiments with six different types of negatively charged particles and five different sizes (from 100 nm to 3 μm) and different zeta potential demonstrate how a DC electric field combined with AC electric fields (that causes negative-dielectrophoresis particle deviation) could be used for fractionation of particles on the nanoscale in microscale devices.Ministerio de Ciencia e Innovación PGC2018-099217-B-I0
Continuous counter-current affinity colloidal purification
Please click Additional Files below to see the full abstract
Electric field induced fluid flow on microelectrodes: the effect of illumination
The electrokinetic manipulation of particles suspended in a fluid medium is accomplished using microelectrodes that generate non-uniform fields of significant strength from low applied potentials. The high strength fields produce not only forces on the particles but also on the fluid medium used for suspension. This paper presents qualitative and semi-quantitative observations of the movement of the fluid at applied field frequencies of the order of 1MHz and higher. The importance of the illumination in generating the fluid flow is described, the flow depending on both the intensity of illumination and the applied electric field. The theory of electrothermally induced fluid flow is briefly described and compared with the experimental observations. Reasonable agreement is found between the experiments and the theory, with the light generating temperature gradients, and therefore gradients in fluid permittivity and conductivity, and the electric field responsible for the motive force
Electrothermal liquid motion in microsystems subjected to alternating and rotating electric fields
Electrothermal motion in an aqueous solution appears when an electric field is coupled with thermally-induced gradients of conductivity and permittivity in the fluid. The temperature field can be produced by external sources, such as strong illumination, or caused by the applied electric field through Joule heating. Electrothermal flow in microsystems is usually important at frequencies around 1 MHz and voltages around. 10 V. In this work, we consider first the two-dimensional problem of an aqueous solution placed on top of two co-planar electrodes that are subjected to an ac potential difference when there is either a vertical or horizontal temperature gradient. Secondly, we study the three-dimensional problem of an aqueous solution lying on four co-planar electrodes which produce a rotating field. This electric field when combined with a vertical temperature gradient rotates the liquid. The resulting electric field an liquid motion in these problems are characterised using self-similar solutions. Finally, these analytical solutions are compared with numerical and experimental results
Wall Repulsion during Electrophoresis: Testing the Theory of Concentration-Polarization Electroosmosis
We experimentally study the repulsion of charged microscopic particles with the channel walls during electrophoresis in microfluidic devices. For low frequencies of the electric fields (< 10 kHz), this repulsion is mainly due to the hydrodynamic interaction caused by the flow vortices that arise from the slip velocity induced by the electric field on the particle surface, as shown in a recent publication [Fernandez-Mateo et al., Physical Review Letters, 128, 074501, (2022)]. The maximum slip velocity on the particle surface is inferred from measurements of wall-particle separation.
Importantly, this procedure allows us to infer very small slip velocities that otherwise are too weak to be measured directly. Data at small electric field amplitudes (E0) agree with theoretical predictions using the model of Concentration Polarization Electroosmosis (CPEO), which has recently been proposed as the mechanism behind the flow vortices on the surface of the particles. Data for higher electric fields show that the predictions of the CPEO theory for weak electric fields are not valid beyond E0 ∼ 60 kV/m. Additionally, we also show that, for sufficiently strong electric fields, the
quadrupolar flow structures become disrupted, leading to a weaker wall repulsion.Ministerio de Ciencia e Innovación PGC2018-099217-B-I00, 10.13039/50110001103
Concentration-polarization electroosmosis near insulating constrictions within microfluidic channels
Electric fields are commonly used to trap and separate micro- and nanoparticles near channel constrictions in microfluidic devices. The trapping mechanism is attributed to the electrical forces arising from the nonhomogeneous electric field caused by the constrictions, and the phenomenon is known as insulator-based-dielectrophoresis (iDEP). In this paper, we describe stationary electroosmotic flows of electrolytes around insulating constrictions induced by low frequency AC electric fields (below 10 kHz). Experimental characterization of the flows is described for two different channel heights (50 and 10 μm), together with numerical simulations based on an electrokinetic model that considers the modification of the local ionic concentration due to surface conductance on charged insulating walls. We term this phenomenon concentration-polarization electroosmosis (CPEO). The observed flow characteristics are in qualitative agreement with the predictions of this model. However, for shallow channels (10 μm), trapping of the particles on both sides of the constrictions is also observed. This particle and fluid behavior could play a major role in iDEP and could be easily misinterpreted as a dielectrophoretic force
- …