7,286 research outputs found

    Implementing a Reconciliation and Balancing Model in the U.s. Industry Accounts

    Get PDF
    As part of the U.S. Bureau of Economic Analysis’ integration initiative (Yuskavage, 2000; Moyer et al., 2004a, 2004b; Lawson et al., 2006), the Industry Accounts Directorate is drawing upon the Stone method (Stone et al., 1942) and Chen (2006) to reconcile the gross operating surplus component of value-added from the 2002 expenditure-based benchmark input-output accounts and the 2002 income-based gross domestic product-by-industry accounts. The objective of the reconciliation is to use information regarding the relative reliabilities of underlying data in both the benchmark input-output use table and the gross domestic product-by-industry accounts in a balanced input-output framework in order to improve intermediate input estimates and gross operating surplus estimates in both accounts. Given a balanced input-output framework, the Stone method also provides a tool for balancing the benchmark use table. This paper presents work by the Industry Accounts Directorate to develop and implement the reconciliation and balancing model. The paper provides overviews of the benchmark use table and gross domestic product-by-industry accounts, including features of external source data and adjustment methodologies that are relevant for the reconciliation. In addition, the paper presents the empirical model that the Industry Accounts Directorate is building and briefly describes the technology used to solve the model. Preliminary work during development of the model shows that reconciling and balancing a large system with disaggregated data is computationally feasible and efficient in pursuit of an economically accurate and reliable benchmark use table and gross domestic product-by-industry accounts.

    Ecological risk assessment of invertebrates caught in Swedish west-coast fisheries

    Get PDF
    Ecological risk assessments are important as scientific support for the implementation of ecosystem-based fisheries management. Marine invertebrates are important to ecosystem structure and function and may be sensitive to fishing pressure. Some are also of increasing commercial value – but have hitherto not been paid much attention to in ecological risk assessments. Here, catches of invertebrates in Swedish west-coast fisheries with demersal trawls and creels are examined from an ecological risk assessment perspective. It is found that few non-commercial invertebrate species have been regularly recorded in onboard observer programs. Furthermore, for being a comparatively well-studied area, it is striking to find that out of the 93 species included, 56% could be classified as data deficient in terms of known attributes needed to perform basic ecological risk assessments. This implies that there is little or no available information on the basic life history traits important for estimating productivity. Additionally, onboard observer data for invertebrates are inadequate beyond targeted commercial species for robust statistical analysis on volumes generated over time and between fisheries. However, over 18% of the studied species are categorized as red-listed on the Swedish IUCN Red List. Combined with the few records available in observer data programs, the study illustrates the need to pay more attention to marine invertebrates in fisheries monitoring programs and research, especially bycaught and non-commercial invertebrate species

    Superconducting Diamond on Silicon Nitride for Device Applications

    Get PDF
    Chemical vapour deposition (CVD) grown nanocrystalline diamond is an attractive material for the fabrication of devices. For some device architectures, optimisation of its growth on silicon nitride is essential. Here, the effects of three pre-growth surface treatments, often employed as cleaning methods of silicon nitride, were investigated. Such treatments provide control over the surface charge of the substrate through modification of the surface functionality, allowing for the optimisation of electrostatic diamond seeding densities. Zeta potential measurements and X-ray photoelectron spectroscopy (XPS) were used to analyse the silicon nitride surface following each treatment. Exposing silicon nitride to an oxygen plasma offered optimal surface conditions for the electrostatic self-assembly of a hydrogen-terminated diamond nanoparticle monolayer. The subsequent growth of boron-doped nanocrystalline diamond thin films on modified silicon nitride substrates under CVD conditions produced coalesced films for oxygen plasma and solvent treatments, whilst pin-holing of the diamond film was observed following RCA-1 treatment. The sharpest superconducting transition was observed for diamond grown on oxygen plasma treated silicon nitride, demonstrating it to be of the least structural disorder. Modifications to the substrate surface optimise the seeding and growth processes for the fabrication of diamond on silicon nitride devices

    Nursing Advising Using a MOOC: A Case Study

    Get PDF
    Advanced technology has moved online courses from being available to exclusively to elite students to literally being open to the general public. The proliferation of Massive Open Online Courses (MOOCs) has led to expanding public access to a wide range of information including careers in health care fields. Our group developed a MOOC to assist people from around the world who are interested in pursuing a career in nursing get the information they need to be successful in the nursing program and in the profession of nursing. In this article, we describe course content, who the students were who enrolled in the free MOOC, and the course outcomes we developed. In addition, we discuss lessons learned and provide recommendations to assist others seeking to develop a MOOC for career advising

    Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    Full text link
    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.Comment: 28 pages, 25 figures, 6 table

    Gait dynamics in mouse models of Parkinson's disease and Huntington's disease

    Get PDF
    BACKGROUND: Gait is impaired in patients with Parkinson's disease (PD) and Huntington's disease (HD), but gait dynamics in mouse models of PD and HD have not been described. Here we quantified temporal and spatial indices of gait dynamics in a mouse model of PD and a mouse model of HD. METHODS: Gait indices were obtained in C57BL/6J mice treated with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day for 3 days) for PD, the mitochondrial toxin 3-nitropropionic acid (3NP, 75 mg/kg cumulative dose) for HD, or saline. We applied ventral plane videography to generate digital paw prints from which indices of gait and gait variability were determined. Mice walked on a transparent treadmill belt at a speed of 34 cm/s after treatments. RESULTS: Stride length was significantly shorter in MPTP-treated mice (6.6 ± 0.1 cm vs. 7.1 ± 0.1 cm, P < 0.05) and stride frequency was significantly increased (5.4 ± 0.1 Hz vs. 5.0 ± 0.1 Hz, P < 0.05) after 3 administrations of MPTP, compared to saline-treated mice. The inability of some mice treated with 3NP to exhibit coordinated gait was due to hind limb failure while forelimb gait dynamics remained intact. Stride-to-stride variability was significantly increased in MPTP-treated and 3NP-treated mice compared to saline-treated mice. To determine if gait disturbances due to MPTP and 3NP, drugs affecting the basal ganglia, were comparable to gait disturbances associated with motor neuron diseases, we also studied gait dynamics in a mouse model of amyotrophic lateral sclerosis (ALS). Gait variability was not increased in the SOD1 G93A transgenic model of ALS compared to wild-type control mice. CONCLUSION: The distinct characteristics of gait and gait variability in the MPTP model of Parkinson's disease and the 3NP model of Huntington's disease may reflect impairment of specific neural pathways involved
    • …
    corecore