30,978 research outputs found
Some Applications of Detailed Wind Profile Data to Launch Vehicle Response Problems
The response of a launch vehicle to a number of detailed wind profiles has been determined. The wind profiles were measured by two techniques which are briefly described. One of these techniques uses an angle-of-attack sensor in conjunction with guidance data to measure the wind profile traversed by some particular launch vehicle. The other wind-measuring technique is a photographic triangulation method, whereby two cameras take simultaneous pictures of a vertical trail of smoke left by a launch vehicle or sounding rocket. The response of a vehicle flying these detailed profiles is compared with the response of the same vehicle flying through balloon-measured profiles. The response to the detailed wind profiles, relative t o the balloon-measured profiles, is characterized by the large excitation of the rigid pitch and elastic bending modes. This is found to cause higher loads on the launch vehicle structure. Established design criteria which utilize balloon measured wind profiles have arbitrarily accounted-for this increased load by adding a load due to some type of discrete gust
Cosmic antimatter annihilation and the gamma-ray background spectrum
Cosmic antimatter annihilation and gamma ray background spectru
First-principles prediction of redox potentials in transition-metal compounds with LDA+U
First-principles calculations within the Local Density Approximation (LDA) or
Generalized Gradient Approximation (GGA), though very successful, are known to
underestimate redox potentials, such as those at which lithium intercalates in
transition metal compounds. We argue that this inaccuracy is related to the
lack of cancellation of electron self-interaction errors in LDA/GGA and can be
improved by using the DFT+ method with a self-consistent evaluation of the
parameter. We show that, using this approach, the experimental lithium
intercalation voltages of a number of transition metal compounds, including the
olivine LiMPO (M=Mn, Fe Co, Ni), layered LiMO (Co,
Ni) and spinel-like LiMO (M=Mn, Co), can be reproduced
accurately.Comment: 19 pages, 6 figures, Phys. Rev. B 70, 235121 (2004
Exact relativistic treatment of stationary counter-rotating dust disks III. Physical Properties
This is the third in a series of papers on the construction of explicit
solutions to the stationary axisymmetric Einstein equations which can be
interpreted as counter-rotating disks of dust. We discuss the physical
properties of a class of solutions to the Einstein equations for disks with
constant angular velocity and constant relative density which was constructed
in the first part. The metric for these spacetimes is given in terms of theta
functions on a Riemann surface of genus 2. It is parameterized by two physical
parameters, the central redshift and the relative density of the two
counter-rotating streams in the disk. We discuss the dependence of the metric
on these parameters using a combination of analytical and numerical methods.
Interesting limiting cases are the Maclaurin disk in the Newtonian limit, the
static limit which gives a solution of the Morgan and Morgan class and the
limit of a disk without counter-rotation. We study the mass and the angular
momentum of the spacetime. At the disk we discuss the energy-momentum tensor,
i.e. the angular velocities of the dust streams and the energy density of the
disk. The solutions have ergospheres in strongly relativistic situations. The
ultrarelativistic limit of the solution in which the central redshift diverges
is discussed in detail: In the case of two counter-rotating dust components in
the disk, the solutions describe a disk with diverging central density but
finite mass. In the case of a disk made up of one component, the exterior of
the disks can be interpreted as the extreme Kerr solution.Comment: 30 pages, 20 figures; to appear in Phys. Rev.
Coarse-graining protein energetics in sequence variables
We show that cluster expansions (CE), previously used to model solid-state
materials with binary or ternary configurational disorder, can be extended to
the protein design problem. We present a generalized CE framework, in which
properties such as energy can be unambiguously expanded in the amino-acid
sequence space. The CE coarse grains over nonsequence degrees of freedom (e.g.,
side-chain conformations) and thereby simplifies the problem of designing
proteins, or predicting the compatibility of a sequence with a given structure,
by many orders of magnitude. The CE is physically transparent, and can be
evaluated through linear regression on the energies of training sequences. We
show, as example, that good prediction accuracy is obtained with up to pairwise
interactions for a coiled-coil backbone, and that triplet interactions are
important in the energetics of a more globular zinc-finger backbone.Comment: 10 pages, 3 figure
J-type Carbon Stars in the Large Magellanic Cloud
A sample of 1497 carbon stars in the Large Magellanic Cloud has been observed
in the red part of the spectrum with the 2dF facility on the AAT. Of these, 156
have been identified as J-type (i.e. 13C-rich) carbon stars using a technique
which provides a clear distinction between J stars and the normal N-type carbon
stars that comprise the bulk of the sample, and yields few borderline cases. A
simple 2-D classification of the spectra, based on their spectral slopes in
different wavelength regions, has been constructed and found to be related to
the more conventional c- and j-indices, modified to suit the spectral regions
observed. Most of the J stars form a photometric sequence in the K - (J-K)
colour magnitude diagram, parallel to and 0.6 mag fainter than the N star
sequence. A subset of the J stars (about 13 per cent) are brighter than this J
star sequence; most of these are spectroscopically different from the other J
stars. The bright J stars have stronger CN bands than the other J stars and are
found strongly concentrated in the central regions of the LMC. Most of the
rather few stars in common with Hartwick and Cowley's sample of suspected CH
stars are J stars. Overall, the proportion of carbon stars identified as J
stars is somewhat lower than has been found in the Galaxy. The Na D lines are
weaker in the LMC J stars than in either the Galactic J stars or the LMC N
stars, and do not seem to depend on temperature.Comment: 19 pages, 21 figures, Latex; in press, MNRA
Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94727/1/jgra19333.pd
- …