9,868 research outputs found

    Collapses and revivals of stored orbital angular momentum of light in a cold atomic ensemble

    Full text link
    We report on the storage of orbital angular momentum of light in a cold ensemble of cesium atoms. We employ Bragg diffraction to retrieve the stored optical information impressed into the atomic coherence by the incident light fields. The stored information can be manipulated by an applied magnetic field and we were able to observe collapses and revivals due to the rotation of the stored atomic Zeeman coherence for times longer than 15 μs\mu s.Comment: Submitted to Physical Review

    Euclidean Thermal Green Functions of Photons in Generalized Euclidean Rindler Spaces for any Feynman-like Gauge

    Get PDF
    The thermal Euclidean Green functions for Photons propagating in the Rindler wedge are computed employing an Euclidean approach within any covariant Feynman-like gauge. This is done by generalizing a formula which holds in the Minkowskian case. The coincidence of the found (\be=2\pi)-Green functions and the corresponding Minkowskian vacuum Green functions is discussed in relation to the remaining static gauge ambiguity already found in previous papers. Further generalizations to more complicated manifolds are discussed. Ward identities are verified in the general case.Comment: 12 pages, standard latex, no figures, some signs changed, more comments added, final version to appear on Int. J. Mod. Phys.

    Charged di-boson production at the LHC in a 4-site model with a composite Higgs boson

    Full text link
    We investigate the scope of the LHC in probing the parameter space of a 4-site model supplemented by one composite Higgs state, assuming all past, current and future energy and luminosity stages of the CERN machine. We concentrate on the yield of charged di-boson production giving two opposite-charge different-flavour leptons and missing (transverse) energy, i.e., events induced via the subprocess qqˉe+νeμνˉμq\bar q\to e^+\nu_e \mu^-\bar\nu_\mu + c.c.{\rm{c.c.}}, which enables the production in the intermediate step of all additional neutral and charged gauge bosons belonging to the spectrum of this model, some of which in resonant topologies. We find this channel accessible over the background at all LHC configurations after a dedicated cut-based analysis. We finally compare the yield of the di-boson mode to that of Drell-Yan processes and establish that they have complementary strengths, one covering regions of parameter space precluded to the others and vice versa.Comment: 36 pages, 13 figures, 13 table

    Dynamics of a stored Zeeman coherence grating in an external magnetic field

    Full text link
    We investigate the evolution of a Zeeman coherence grating induced in a cold atomic cesium sample in the presence of an external magnetic field. The gratings are created in a three-beam light storage configuration using two quasi-collinear writing laser pulses and reading with a counterpropagating pulse after a variable time delay. The phase conjugated pulse arising from the atomic sample is monitored. Collapses and revivals of the retrieved pulse are observed for different polarizations of the laser beams and for different directions of the applied magnetic field. While magnetic field inhomogeneities are responsible for the decay of the coherent atomic response, a five-fold increase in the coherence decay time, with respect to no applied magnetic field, is obtained for an appropriate choice of the direction of the applied magnetic field. A simplified theoretical model illustrates the role of the magnetic field mean and its inhomogeneity on the collective atomic response.Comment: To appear in J. Phys.

    Production of Z' and W' via Drell-Yan processes in the 4D Composite Higgs Model at the LHC

    Get PDF
    We present an analysis of both the Neutral Current (NC) and Charged Current (CC) Drell-Yan processes at the LHC within a 4 Dimensional realization of a Composite Higgs model studying the cross sections and taking into account the possible impact of the extra fermions present in the spectrum.Comment: Conference proceeding, XII IFAE Edition, 3-5 April 2013, Cagliari. 2 pages, 2 figures; v2 typo correcte

    Phenomenological Consequences of the Constrained Exceptional Supersymmetric Standard Model

    Full text link
    The Exceptional Supersymmetric Standard Model (E6_6SSM) provides a low energy alternative to the MSSM, with an extra gauged U(1)N_N symmetry, solving the μ\mu-problem of the MSSM. Inspired by the possible embedding into an E6_6 GUT, the matter content fills three generations of E6_6 multiplets, thus predicting exciting exotic matter such as diquarks or leptoquarks. We present predictions from a constrained version of the model (cE6_6SSM), with a universal scalar mass m0m_0, trilinear mass AA and gaugino mass M1/2M_{1/2}. We reveal a large volume of the cE6_6SSM parameter space where the correct breakdown of the gauge symmetry is achieved and all experimental constraints satisfied. We predict a hierarchical particle spectrum with heavy scalars and light gauginos, while the new exotic matter can be light or heavy depending on parameters. We present representative cE6_6SSM scenarios, demonstrating that there could be light exotic particles, like leptoquarks and a U(1)N_N Z' boson, with spectacular signals at the LHC.Comment: Contribution to the proceedings of SUSY 09, Boston, USA, June 2009, 4 page
    corecore