15 research outputs found

    New reference ranges for interpreting forced expiratory manoeuvres in infants and implications for clinical interpretation: a multicentre collaboration

    Get PDF
    The raised volume rapid thoracoabdominal compression (RVRTC) technique is commonly used to obtain full forced expiratory manoeuvres from infants, but reference equations derived from 'in-house' equipment have been shown to be inappropriate for current commercially available devices

    Priorities for future research into asthma diagnostic tools: A PAN-EU consensus exercise from the European asthma research innovation partnership (EARIP)

    Full text link
    The diagnosis of asthma is currently based on clinical history, physical examination and lung function, and to date, there are no accurate objective tests either to confirm the diagnosis or to discriminate between different types of asthma. This consensus exercise reviews the state of the art in asthma diagnosis to identify opportunities for future investment based on the likelihood of their successful development, potential for widespread adoption and their perceived impact on asthma patients. Using a two-stage e-Delphi process and a summarizing workshop, a group of European asthma experts including health professionals, researchers, people with asthma and industry representatives ranked the potential impact of research investment in each technique or tool for asthma diagnosis and monitoring. After a systematic review of the literature, 21 statements were extracted and were subject of the two-stage Delphi process. Eleven statements were scored 3 or more and were further discussed and ranked in a face-to-face workshop. The three most important diagnostic/predictive tools ranked were as follows: New biological markers of asthma (eg genomics, proteomics and metabolomics) as a tool for diagnosis and/or monitoring, Prediction of future asthma in preschool children with reasonable accuracy and Tools to measure volatile organic compounds (VOCs) in exhaled breath

    Priorities for future research into asthma diagnostic tools: A PAN-EU consensus exercise from the European asthma research innovation partnership (EARIP)

    Full text link
    The diagnosis of asthma is currently based on clinical history, physical examination and lung function, and to date, there are no accurate objective tests either to confirm the diagnosis or to discriminate between different types of asthma. This consensus exercise reviews the state of the art in asthma diagnosis to identify opportunities for future investment based on the likelihood of their successful development, potential for widespread adoption and their perceived impact on asthma patients. Using a two-stage e-Delphi process and a summarizing workshop, a group of European asthma experts including health professionals, researchers, people with asthma and industry representatives ranked the potential impact of research investment in each technique or tool for asthma diagnosis and monitoring. After a systematic review of the literature, 21 statements were extracted and were subject of the two-stage Delphi process. Eleven statements were scored 3 or more and were further discussed and ranked in a face-to-face workshop. The three most important diagnostic/predictive tools ranked were as follows: “New biological markers of asthma (eg genomics, proteomics and metabolomics) as a tool for diagnosis and/or monitoring,” “Prediction of future asthma in preschool children with reasonable accuracy” and “Tools to measure volatile organic compounds (VOCs) in exhaled breath.”

    Priorities for future research into asthma diagnostic tools: A PAN-EU consensus exercise from the European asthma research innovation partnership (EARIP)

    Full text link
    peer reviewedThe diagnosis of asthma is currently based on clinical history, physical examination and lung function, and to date, there are no accurate objective tests either to confirm the diagnosis or to discriminate between different types of asthma. This consensus exercise reviews the state of the art in asthma diagnosis to identify opportunities for future investment based on the likelihood of their successful development, potential for widespread adoption and their perceived impact on asthma patients. Using a two-stage e-Delphi process and a summarizing workshop, a group of European asthma experts including health professionals, researchers, people with asthma and industry representatives ranked the potential impact of research investment in each technique or tool for asthma diagnosis and monitoring. After a systematic review of the literature, 21 statements were extracted and were subject of the two-stage Delphi process. Eleven statements were scored 3 or more and were further discussed and ranked in a face-to-face workshop. The three most important diagnostic/predictive tools ranked were as follows: “New biological markers of asthma (eg genomics, proteomics and metabolomics) as a tool for diagnosis and/or monitoring,” “Prediction of future asthma in preschool children with reasonable accuracy” and “Tools to measure volatile organic compounds (VOCs) in exhaled breath.”. © 2018 John Wiley & Sons Lt

    Priorities for future research into asthma diagnostic tools: A PAN-EU consensus exercise from the European asthma research innovation partnership (EARIP).

    Full text link
    The diagnosis of asthma is currently based on clinical history, physical examination and lung function, and to date, there are no accurate objective tests either to confirm the diagnosis or to discriminate between different types of asthma. This consensus exercise reviews the state of the art in asthma diagnosis to identify opportunities for future investment based on the likelihood of their successful development, potential for widespread adoption and their perceived impact on asthma patients. Using a two-stage e-Delphi process and a summarizing workshop, a group of European asthma experts including health professionals, researchers, people with asthma and industry representatives ranked the potential impact of research investment in each technique or tool for asthma diagnosis and monitoring. After a systematic review of the literature, 21 statements were extracted and were subject of the two-stage Delphi process. Eleven statements were scored 3 or more and were further discussed and ranked in a face-to-face workshop. The three most important diagnostic/predictive tools ranked were as follows: "New biological markers of asthma (eg genomics, proteomics and metabolomics) as a tool for diagnosis and/or monitoring," "Prediction of future asthma in preschool children with reasonable accuracy" and "Tools to measure volatile organic compounds (VOCs) in exhaled breath.
    corecore