20 research outputs found

    Cristalización de ADN con fármacos y resolución de su estructura

    Get PDF
    En este proyecto se han realizado estudios estructurales de oligonucleótidos de 10 pares de bases, todos ellos ricos en adenina (A) y timina (T). Estas secuencias de ADN son representativas de grandes zonas del genoma que no codifican proteínas y de las cuales no se conoce su función biológica. El objetivo ha sido formar complejos con diferentes fármacos que pudieran interaccionar con el ADN y resolver su estructura. Esto se ha hecho mediante la técnica de difracción de rayos X de monocristal. Esta técnica es muy precisa y puede llegar a escalas atómicas ya que utiliza longitudes de onda comparables a las distancias interatómicas, aunque como inconvenientes tiene que es muy cara, lenta y laboriosa. Concretamente hemos trabajado con las siguientes secuencias de ADN: - d(ATATATATAT)2 abreviado: (AT)5. - d(AATATATATT)2 abreviado: A(AT)4T. - d(TATATATATA)2 abreviado: (TA)5. - d(CATATATATG)2 abreviado: C(AT)4G. Se han hecho estudios de cristalización de todos ellos en presencia de fármacos que interaccionan en el surco estrecho del DNA como son el Berenil, la Pentamidina y el DAPI. De esta manera se han obtenido varios cristales, los cuales se han analizado por difracción de rayos X en el sincrotrón de Grenoble (ESRF). De todos ellos tan solo hemos podido resolver la estructura del oligonucleótido (AT)5 en presencia de Pentamidina ya que todos los demás cristales obtenidos no tuvieron suficiente resolución. Analizando la estructura resuelta hemos podido ver como la Pentamidina se aloja en el surco estrecho del oligonucleótido y sus extremos cargados interaccionan con los fosfatos de nucleótidos vecinos, ejerciendo así una función de entrecruzamiento y dando más estabilidad al cristal. Ésta es una interacción fármaco-ADN nunca vista hasta el momento

    An Aromatic Dyad Motif in Dye Decolourising Peroxidases Has Implications for Free Radical Formation and Catalysis

    Get PDF
    Dye decolouring peroxidases (DyPs) are the most recent class of heme peroxidase to be discovered. On reacting with H2O2, DyPs form a high‐valent iron(IV)‐oxo species and a porphyrin radical (Compound I) followed by stepwise oxidation of an organic substrate. In the absence of substrate, the ferryl species decays to form transient protein‐bound radicals on redox active amino acids. Identification of radical sites in DyPs has implications for their oxidative mechanism with substrate. Using a DyP from Streptomyces lividans, referred to as DtpA, which displays low reactivity towards synthetic dyes, activation with H2O2 was explored. A Compound I EPR spectrum was detected, which in the absence of substrate decays to a protein‐bound radical EPR signal. Using a newly developed version of the Tyrosyl Radical Spectra Simulation Algorithm, the radical EPR signal was shown to arise from a pristine tyrosyl radical and not a mixed Trp/Tyr radical that has been widely reported in DyP members exhibiting high activity with synthetic dyes. The radical site was identified as Tyr374, with kinetic studies inferring that although Tyr374 is not on the electron‐transfer pathway from the dye RB19, its replacement with a Phe does severely compromise activity with other organic substrates. These findings hint at the possibility that alternative electron‐transfer pathways for substrate oxidation are operative within the DyP family. In this context, a role for a highly conserved aromatic dyad motif is discussed

    A subtle structural change in the distal haem pocket has a remarkable effect on tuning hydrogen peroxide reactivity in dye decolourising peroxidases from Streptomyces lividans

    Get PDF
    Dye decolourising peroxidases (DyPs) are oxidative haem containing enzymes that can oxidise organic substrates by first reacting with hydrogen peroxide. Herein, we have focused on two DyP homologs, DtpAa and DtpA, from the soil-dwelling bacterium Streptomyces lividans. By using X-ray crystallography, stopped-flow kinetics, deuterium kinetic isotope studies and EPR spectroscopy, we show that both DyPs react with peroxide to form Compound I (a FeIV=O species and a porphyrin π-cation radical), via a common mechanism, but the reactivity and rate limits that define the mechanism are markedly different between the two homologs (DtpA forms Compound I rapidly, no kinetic isotope effect; DtpAa 100-fold slower Compound I formation and a distinct kinetic isotope effect). By determining the validated ferric X-ray structure of DtpAa and comparing it with the ferric DtpA structure, we attribute the kinetic differences to a subtle structural repositioning of the distal haem pocket Asp side chain. Through site-directed mutagenesis we show the acid-base catalyst responsible for proton-transfer to form Compound I comprises a combination of a water molecule and the distal Asp. Compound I formation in the wild-type enzymes as well as their distal Asp variants is pH dependent, sharing a common ionisation equilibrium with an apparent pKa of ~ 4.5-5.0. We attribute this pKa to the deprotonation/protonation of the haem bound H₂O₂. Our studies therefore reveal a mechanism for Compound I formation in which the rate limit may be shifted from peroxide binding to proton-transfer controlled by the distal Asp position and the associated hydrogen-bonded water molecules

    Successful sample preparation for serial crystallography experiments

    Get PDF
    Serial crystallography, at both synchrotron and X-ray free-electron laser light sources, is becoming increasingly popular. However, the tools in the majority of crystallization laboratories are focused on producing large single crystals by vapour diffusion that fit the cryo-cooled paradigm of modern synchrotron crystallography. This paper presents several case studies and some ideas and strategies on how to perform the conversion from a single crystal grown by vapour diffusion to the many thousands of micro-crystals required for modern serial crystallography grown by batch crystallization. These case studies aim to show (i) how vapour diffusion conditions can be converted into batch by optimizing the length of time crystals take to appear; (ii) how an understanding of the crystallization phase diagram can act as a guide when designing batch crystallization protocols; and (iii) an accessible methodology when attempting to scale batch conditions to larger volumes. These methods are needed to minimize the sample preparation gap between standard rotation crystallography and dedicated serial laboratories, ultimately making serial crystallography more accessible to all crystallographers

    Dose-resolved serial synchrotron and XFEL structures of radiation-sensitive metalloproteins

    Get PDF
    An approach is demonstrated to obtain, in a sample- and time-efficient manner, multiple dose-resolved crystal structures from room-temperature protein microcrystals using identical fixed-target supports at both synchrotrons and X-ray free-electron lasers (XFELs). This approach allows direct comparison of dose-resolved serial synchrotron and damage-free XFEL serial femtosecond crystallography structures of radiation-sensitive proteins. Specifically, serial synchrotron structures of a heme peroxidase enzyme reveal that X-ray induced changes occur at far lower doses than those at which diffraction quality is compromised (the Garman limit), consistent with previous studies on the reduction of heme proteins by low X-ray doses. In these structures, a functionally relevant bond length is shown to vary rapidly as a function of absorbed dose, with all room-temperature synchrotron structures exhibiting linear deformation of the active site compared with the XFEL structure. It is demonstrated that extrapolation of dose-dependent synchrotron structures to zero dose can closely approximate the damage-free XFEL structure. This approach is widely applicable to any protein where the crystal structure is altered by the synchrotron X-ray beam and provides a solution to the urgent requirement to determine intact structures of such proteins in a high-throughput and accessible manner

    High-throughput structures of protein–ligand complexes at room temperature using serial femtosecond crystallography

    Get PDF
    High-throughput X-ray crystal structures of protein–ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein–ligand complexes using SFX

    Cristal·lització de DNA ric en AT's en presència de fàrmacs

    No full text
    En aquest treball s’han realitzat estudis estructurals d’oligonucleòtids rics en parells de bases adenina i timina. En concret hem fet assaigs de cristal·litazió amb dos decàmers i dos dodecàmers que son els següents: • d(ATATATATAT)2 que abreugem com (AT)5 • d(AATATATATT)2 que abreugem com A(AT)4T • d(CGATATATATCG)2 que abreugem com CG(AT)4CG • d(AATATATATATT)2 que abreugem com A(AT)5T Aquest oligonucleòtids rics en AT’s son representatius de grans zones del genoma comunes a tots els organismes, conegudes com non coding DNA, les quals no codifiquen per cap proteïna i es desconeix la funció biològica que puguin tenir. L’objectiu ha estat formar complexes d’aquests troçets de DNA amb fàrmacs que interaccionen en el solc menor del mateix, coneguts com minor groove binders, i resoldre la seva estructura. Les drogues utilitzades han estat la pentamidina, el DAPi i el CD-27. Això s’ha fet mitjançant la tècnica de difracció de raigs X de monocristall. Aquesta tècnica és molt precisa i pot arribar a resolucions atòmiques ja que utilitza longituds d’ona comparables a les distàncies interatòmiques , tot i que com a inconvenients té que és una tècnia molt cara, lenta i laboriosa. Com ha resultat dels assaigs cristal·logràfics s’han obtingut diversos cristalls bons, els quals han estat difractats una part al sincrotró de Grenoble (ESRF) i l’altre a la Plataforma Automatitzada de Cristal·lografia del Parc Científic de Barcelona. De tots ells, els millors resultats han estat per un cristall format per (AT)5 i pentamidina. Ja havíem fet estudis previs d’aquesta estructura, però aquesta vegada hem pogut resoldre-la a alta resolució i veure aspectes importants que no quedaven clars. La pentamidina es troba al solc menor central del dúplex, establint interaccions electrostàtiques a través dels seus extrems carregats amb les fosfats d’oligonucleòtids veïns, fent així una tasca d’entrecreuament cross-linking i estabilitzant l’estructura. Aquesta interacció fàrmac-DNA no te antecedents bibliogràfics

    Cristal·lització de DNA ric en AT's en presència de fàrmacs

    No full text
    En aquest treball s’han realitzat estudis estructurals d’oligonucleòtids rics en parells de bases adenina i timina. En concret hem fet assaigs de cristal·litazió amb dos decàmers i dos dodecàmers que son els següents: • d(ATATATATAT)2 que abreugem com (AT)5 • d(AATATATATT)2 que abreugem com A(AT)4T • d(CGATATATATCG)2 que abreugem com CG(AT)4CG • d(AATATATATATT)2 que abreugem com A(AT)5T Aquest oligonucleòtids rics en AT’s son representatius de grans zones del genoma comunes a tots els organismes, conegudes com non coding DNA, les quals no codifiquen per cap proteïna i es desconeix la funció biològica que puguin tenir. L’objectiu ha estat formar complexes d’aquests troçets de DNA amb fàrmacs que interaccionen en el solc menor del mateix, coneguts com minor groove binders, i resoldre la seva estructura. Les drogues utilitzades han estat la pentamidina, el DAPi i el CD-27. Això s’ha fet mitjançant la tècnica de difracció de raigs X de monocristall. Aquesta tècnica és molt precisa i pot arribar a resolucions atòmiques ja que utilitza longituds d’ona comparables a les distàncies interatòmiques , tot i que com a inconvenients té que és una tècnia molt cara, lenta i laboriosa. Com ha resultat dels assaigs cristal·logràfics s’han obtingut diversos cristalls bons, els quals han estat difractats una part al sincrotró de Grenoble (ESRF) i l’altre a la Plataforma Automatitzada de Cristal·lografia del Parc Científic de Barcelona. De tots ells, els millors resultats han estat per un cristall format per (AT)5 i pentamidina. Ja havíem fet estudis previs d’aquesta estructura, però aquesta vegada hem pogut resoldre-la a alta resolució i veure aspectes importants que no quedaven clars. La pentamidina es troba al solc menor central del dúplex, establint interaccions electrostàtiques a través dels seus extrems carregats amb les fosfats d’oligonucleòtids veïns, fent així una tasca d’entrecreuament cross-linking i estabilitzant l’estructura. Aquesta interacció fàrmac-DNA no te antecedents bibliogràfics

    Cristalización de ADN con fármacos y resolución de su estructura

    No full text
    En este proyecto se han realizado estudios estructurales de oligonucleótidos de 10 pares de bases, todos ellos ricos en adenina (A) y timina (T). Estas secuencias de ADN son representativas de grandes zonas del genoma que no codifican proteínas y de las cuales no se conoce su función biológica. El objetivo ha sido formar complejos con diferentes fármacos que pudieran interaccionar con el ADN y resolver su estructura. Esto se ha hecho mediante la técnica de difracción de rayos X de monocristal. Esta técnica es muy precisa y puede llegar a escalas atómicas ya que utiliza longitudes de onda comparables a las distancias interatómicas, aunque como inconvenientes tiene que es muy cara, lenta y laboriosa. Concretamente hemos trabajado con las siguientes secuencias de ADN: - d(ATATATATAT)2 abreviado: (AT)5. - d(AATATATATT)2 abreviado: A(AT)4T. - d(TATATATATA)2 abreviado: (TA)5. - d(CATATATATG)2 abreviado: C(AT)4G. Se han hecho estudios de cristalización de todos ellos en presencia de fármacos que interaccionan en el surco estrecho del DNA como son el Berenil, la Pentamidina y el DAPI. De esta manera se han obtenido varios cristales, los cuales se han analizado por difracción de rayos X en el sincrotrón de Grenoble (ESRF). De todos ellos tan solo hemos podido resolver la estructura del oligonucleótido (AT)5 en presencia de Pentamidina ya que todos los demás cristales obtenidos no tuvieron suficiente resolución. Analizando la estructura resuelta hemos podido ver como la Pentamidina se aloja en el surco estrecho del oligonucleótido y sus extremos cargados interaccionan con los fosfatos de nucleótidos vecinos, ejerciendo así una función de entrecruzamiento y dando más estabilidad al cristal. Ésta es una interacción fármaco-ADN nunca vista hasta el momento

    Structural characterisation of ligand, redox and catalytic states in haem enzymes using in crystallo spectroscopies and serial crystallography.

    Get PDF
    X-­ray crystallography is a powerful tool for the study of biomolecules and has determined for instance the structures of numerous enzymes in order to unveil their conformation, interactions with substrates and ligands, and better understand their function. However catalytic processes carried out by enzymes can be of great complexity, involving several steps and intermediates prior to arriving to the final reaction product. Therefore, they are difficult to structurally characterise, since one of the limitations of X­ray crystallography is that provides static 'snapshots' of the average conformation within the crystal. Another important limitation is established by radiation damage, which results from the interaction of the X-­ray beam with the protein crystal, and results in photo-­reduced species which are not fully representative of the state of the measured protein. This is particularly relevant for metalloproteins such as haem proteins, since their metal centres are prone to reduction upon irradiation. In this research project, I aimed to overcome these limitations to study four haem enzymes, DtpA, DtpAa, DHP and NOD;; and their catalytic cycles, trying to obtain intact species of relevant functional states. To this aim I have used complementary tools such as single­crystal spectroscopies, and the emerging methodologies of serial crystallography, applied at XFEL and synchrotron sources. Spectroscopic information of the crystals provided by in crystallo spectroscopies was used to validate the structures obtained by X­ray crystallography, identify generated species, and assign them within the enzyme catalytic mechanism (e.g. peroxidase cycle). Serial crystallography methodologies were used to measure room-temperature damage-free structures at XFEL sources of our protein targets, such as the resting state Fe(III). The application of serial crystallography at synchrotron sources, delivered low-dose structures of the haem enzymes, and allowed to perform dose-­series measurements with the intention to follow radiation-­induced processes at redox metal sites of haem enzymes
    corecore