31,536 research outputs found
Domain walls in supersymmetric QCD
We consider domain walls that appear in supersymmetric SU(N) with one massive
flavour. In particular, for N > 3 we explicitly construct the elementary domain
wall that interpolates between two contiguous vacua. We show that these
solutions are BPS saturated for any value of the mass of the matter fields. We
also comment on their large N limit and their relevance for supersymmetric
gluodynamics.Comment: 4 pages, 1 figure, uses latex with hep99 class files. Presented at
the International Europhysics Conference in High Energy Physics, Tampere
(Finland) 15-21 July 199
Finite size scaling of the bayesian perceptron
We study numerically the properties of the bayesian perceptron through a
gradient descent on the optimal cost function. The theoretical distribution of
stabilities is deduced. It predicts that the optimal generalizer lies close to
the boundary of the space of (error-free) solutions. The numerical simulations
are in good agreement with the theoretical distribution. The extrapolation of
the generalization error to infinite input space size agrees with the
theoretical results. Finite size corrections are negative and exhibit two
different scaling regimes, depending on the training set size. The variance of
the generalization error vanishes for confirming the
property of self-averaging.Comment: RevTeX, 7 pages, 7 figures, submitted to Phys. Rev.
Exploring Io's atmospheric composition with APEX: first measurement of 34SO2 and tentative detection of KCl
The composition of Io's tenuous atmosphere is poorly constrained. Only the
major species SO2 and a handful of minor species have been positively
identified, but a variety of other molecular species should be present, based
on thermochemical equilibrium models of volcanic gas chemistry and the
composition of Io's environment. This paper focuses on the spectral search for
expected yet undetected molecular species (KCl, SiO, S2O) and isotopes (34SO2).
We analyze a disk-averaged spectrum of a potentially line-rich spectral window
around 345 GHz, obtained in 2010 at the APEX-12m antenna (Atacama Pathfinder
EXperiment). Using different models assuming either extended atmospheric
distributions or a purely volcanically-sustained atmosphere, we tentatively
measure the KCl relative abundance with respect to SO2 and derive a range of
4x10^{-4}-8x10^{-3}. We do not detect SiO or S2O and present new upper limits
on their abundances. We also present the first measurement of the 34S/32S
isotopic ratio in gas phase on Io, which appears to be twice as high as the
Earth and ISM reference values. Strong lines of SO2 and SO are also analyzed to
check for longitudinal variations of column density and relative abundance. Our
models show that, based on their predicted relative abundance with respect to
SO2 in volcanic plumes, both the tentative KCl detection and SiO upper limit
are compatible with a purely volcanic origin for these species.Comment: Accepted for publication in ApJ. 11 pages, 4 figure
The Bak-Sneppen Model on Scale-Free Networks
We investigate by numerical simulations and analytical calculations the
Bak-Sneppen model for biological evolution in scale-free networks. By using
large scale numerical simulations, we study the avalanche size distribution and
the activity time behavior at nodes with different connectivities. We argue the
absence of a critical barrier and its associated critical behavior for infinite
size systems. These findings are supported by a single site mean-field analytic
treatment of the model.Comment: 5 pages and 3 eps figures. Final version appeared in Europhys. Let
Comprehensive study of Leon-Queretaro area
There are no author-identified significant results in this report
Threading Through Macrocycles Enhances the Performance of Carbon Nanotubes as Polymer Fillers
In this work we study the reinforcement of polymers by mechanically
interlocked derivatives of single-walled carbon nanotubes (SWNTs). We compare
the mechanical properties of fibers made of polymers and of composites with
pristine single-walled carbon nanotubes (SWNTs), mechanically interlocked
derivatives of SWNTs (MINTs) and the corresponding supramolecular models.
Improvements of both Young's modulus and tensile strength of up to 200 % were
observed for the polystyrene-MINTs samples with an optimized loading of just
0.01 wt.%, while the supramolecular models with identical chemical composition
and loading showed negligible or even detrimental influence. This behavior is
found for three different types of SWNTs and two types of macrocycles.
Molecular dynamics simulations show that the polymer adopts an elongated
conformation parallel to the SWNT when interacting with MINT fillers,
irrespective of the macrocycle chemical nature, whereas a more globular
structure is taken upon facing with either pristine SWNTs or supramolecular
models. The MINT composite architecture thus leads to a more efficient
exploitation of the axial properties of the SWNTs and of the polymer chain at
the interface, in agreement with experimental results. Our findings demonstrate
that the mechanical bond imparts distinctive advantageous properties to SWNT
derivatives as polymer fillers.Comment: 39 pages, 19 figure
- …