27,810 research outputs found

    Conceptual design of the EU-DEMO dual coolant lithium lead equatorial module

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Within the framework of EUROfusion Program, the Dual Coolant Lithium Lead (DCLL) is one of the four EU breeder blanket concepts that are being investigated as candidates for DEMO. DCLL uses PbLi as the main coolant, tritium breeder, tritium carrier, and neutron multiplier. The main structures, including the first wall, are cooled with helium. The EU program proposed for the next years will consider a DCLL version limited to 550 °C in order to allow the use of conventional materials and technologies. During the first year of EUROfusion activities, a draft design of the DCLL has been proposed. The main blanket performances were adapted to the new specifications and the CAD model of DEMO. The breeder zone has been toroidally divided into four parallel PbLi circuits, separated through stiffening grid radial walls. The PbLi flow routing has been designed to maximize the amount of thermal power extracted by flowing PbLi and to avoid the occurrence of reverse flows due to volumetric heating. Thermal hydraulics, magnetohydrodynamic and neutronics calculations have been performed for the first draft design. The new DCLL design employs Eurofer-alumina-Eurofer sandwich as flow channel insert (FCI).Postprint (published version

    Free Form of the Foldy-Wouthuysen Transformation in External Electromagnetic Fields

    Full text link
    We derive the exact Foldy-Wouthuysen transformation for Dirac fermions in a time independent external electromagnetic field in the basis of the Ritus eigenfunctions, namely the eigenfunctions of the operator (γ⋅Π)2(\gamma \cdot \Pi)^2, with Πμ=pμ−eAμ\Pi^\mu = p^\mu - e A^\mu. In this basis, the transformation acquires a free form involving the dynamical quantum numbers induced by the field.Comment: 8 pages. Accepted in J. Phys. A: Math. and Theo. (Fast Track Communication

    Broadening of H2_2O rotational lines by collision with He atoms at low temperature

    Get PDF
    We report pressure broadening coefficients for the 21 electric-dipole transitions between the eight lowest rotational levels of ortho-H2_2O and para-H2_2O molecules by collisions with He at temperatures from 20 to 120 K. These coefficients are derived from recently published experimental state-to-state rate coefficients for H2_2O:He inelastic collisions, plus an elastic contribution from close coupling calculations. The resulting coefficients are compared to the available experimental data. Mostly due to the elastic contribution, the pressure broadening coefficients differ much from line to line, and increase markedly at low temperature. The present results are meant as a guide for future experiments and astrophysical observations.Comment: 2 figures, 2 table

    Lifshitz Transition in the Two Dimensional Hubbard Model

    Get PDF
    Using large-scale dynamical cluster quantum Monte Carlo simulations, we study the Lifshitz transition of the two dimensional Hubbard model with next-nearest-neighbor hopping (t′t'), chemical potential and temperature as control parameters. At t′≤0t'\le0, we identify a line of Lifshitz transition points associated with a change of the Fermi surface topology at zero temperature. In the overdoped region, the Fermi surface is complete and electron-like; across the Lifshitz transition, the Fermi surface becomes hole-like and develops a pseudogap. At (or very close to) the Lifshitz transition points, a van Hove singularity in the density of states crosses the Fermi level. The van Hove singularity occurs at finite doping due to correlation effects, and becomes more singular when t′t' becomes more negative. The resulting temperature dependence on the bare d-wave pairing susceptibility close to the Lifshitz points is significantly different from that found in the traditional van Hove scenarios. Such unambiguous numerical observation of the Lifshitz transition at t′≤0t'\le0 extends our understanding of the quantum critical region in the phase diagram, and shines lights on future investigations of the nature of the quantum critical point in the two dimensional Hubbard model.Comment: 9 pages, 8 figures, accepted for publication in Physics Review

    Orientació professional a Catalunya

    Get PDF

    SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer

    Get PDF
    BACKGROUND: Even though liver kinase B1 (LKB1) is usually described as a tumor suppressor in a wide variety of tissues, it has been shown that LKB1 aberrant expression is associated with bad prognosis in Hepatocellular Carcinoma (HCC). METHODS: Herein we have overexpressed LKB1 in human hepatoma cells and by using histidine pull-down assay we have investigated the role of the hypoxia-related post-translational modification of Small Ubiquitin-related Modifier (SUMO)ylation in the regulation of LKB1 oncogenic role. Molecular modelling between LKB1 and its interactors, involved in regulation of LKB1 nucleocytoplasmic shuttling and LKB1 activity, was performed. Finally, high affinity SUMO binding entities-based technology were used to validate our findings in a pre-clinical mouse model and in clinical HCC. FINDINGS: We found that in human hepatoma cells under hypoxic stress, LKB1 overexpression increases cell viability and aggressiveness in association with changes in LKB1 cellular localization. Moreover, by using site-directed mutagenesis, we have shown that LKB1 is SUMOylated by SUMO-2 at Lys178 hampering LKB1 nucleocytoplasmic shuttling and fueling hepatoma cell growth. Molecular modelling of SUMO modified LKB1 further confirmed steric impedance between SUMOylated LKB1 and the STe20-Related ADaptor cofactor (STRADα), involved in LKB1 export from the nucleus. Finally, we provide evidence that endogenous LKB1 is modified by SUMO in pre-clinical mouse models of HCC and clinical HCC, where LKB1 SUMOylation is higher in fast growing tumors. INTERPRETATION: Overall, SUMO-2 modification of LKB1 at Lys178 mediates LKB1 cellular localization and its oncogenic role in liver cancer. FUND: This work was supported by grants from NIH (US Department of Health and Human services)-R01AR001576-11A1 (J.M.M and M.L.M-C.), Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C), MINECO: SAF2017-87301-R and SAF2014-52097-R integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación 2013-2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M., respectively), BFU2015-71017/BMC MINECO/FEDER, EU (to A.D.Q. and I.D.M.), BIOEF (Basque Foundation for Innovation and Health Research): EITB Maratoia BIO15/CA/014; Instituto de Salud Carlos III:PIE14/00031, integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovacion 2013-2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M), Asociación Española contra el Cáncer (T.C.D, P·F-T and M.L.M-C), Daniel Alagille award from EASL (to T.C.D), Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M and M.A), La Caixa Foundation Program (to M.L.M), Programma di Ricerca Regione-Università 2007-2009 and 2011-2012, Regione Emilia-Romagna (to E.V.), Ramón Areces Foundation and the Andalusian Government (BIO-198) (A.D.Q. and I.D.M.), ayudas para apoyar grupos de investigación del sistema Universitario Vasco IT971-16 (P.A.), MINECO:SAF2015-64352-R (P.A.), Institut National du Cancer, FRANCE, INCa grant PLBIO16-251 (M.S.R.), MINECO - BFU2016-76872-R to (E.B.). Work produced with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (M.V-R). Finally, Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644). Funding sources had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication
    • …
    corecore