613 research outputs found
On noise treatment in radio measurements of cosmic ray air showers
Precise measurements of the radio emission by cosmic ray air showers require
an adequate treatment of noise. Unlike to usual experiments in particle
physics, where noise always adds to the signal, radio noise can in principle
decrease or increase the signal if it interferes by chance destructively or
constructively. Consequently, noise cannot simply be subtracted from the
signal, and its influence on amplitude and time measurement of radio pulses
must be studied with care. First, noise has to be determined consistently with
the definition of the radio signal which typically is the maximum field
strength of the radio pulse. Second, the average impact of noise on radio pulse
measurements at individual antennas is studied for LOPES. It is shown that a
correct treatment of noise is especially important at low signal-to-noise
ratios: noise can be the dominant source of uncertainty for pulse height and
time measurements, and it can systematically flatten the slope of lateral
distributions. The presented method can also be transfered to other experiments
in radio and acoustic detection of cosmic rays and neutrinos.Comment: 4 pages, 6 figures, submitted to NIM A, Proceedings of ARENA 2010,
Nantes, Franc
The LOPES experiment - recent results, status and perspectives
The LOPES experiment at the Karlsruhe Institute of Technology has been taking
radio data in the frequency range from 40 to 80 MHz in coincidence with the
KASCADE-Grande air shower detector since 2003. Various experimental
configurations have been employed to study aspects such as the energy scaling,
geomagnetic dependence, lateral distribution, and polarization of the radio
emission from cosmic rays. The high quality per-event air shower information
provided by KASCADE-Grande has been the key to many of these studies and has
even allowed us to perform detailed per-event comparisons with simulations of
the radio emission. In this article, we give an overview of results obtained by
LOPES, and present the status and perspectives of the ever-evolving experiment.Comment: Proceedings of the ARENA2010 conference, Nantes, Franc
Radio detection of cosmic ray air showers with LOPES
In the last few years, radio detection of cosmic ray air showers has
experienced a true renaissance, becoming manifest in a number of new
experiments and simulation efforts. In particular, the LOPES project has
successfully implemented modern interferometric methods to measure the radio
emission from extensive air showers. LOPES has confirmed that the emission is
coherent and of geomagnetic origin, as expected by the geosynchrotron
mechanism, and has demonstrated that a large scale application of the radio
technique has great potential to complement current measurements of ultra-high
energy cosmic rays. We describe the current status, most recent results and
open questions regarding radio detection of cosmic rays and give an overview of
ongoing research and development for an application of the radio technique in
the framework of the Pierre Auger Observatory.Comment: 8 pages; Proceedings of the CRIS2006 conference, Catania, Italy; to
be published in Nuclear Physics B, Proceedings Supplement
Air Shower Measurements with the LOPES Radio Antenna Array
LOPES is set up at the location of the KASCADE-Grande extensive air shower
experiment in Karlsruhe, Germany and aims to measure and investigate radio
pulses from Extensive Air Showers. Since radio waves suffer very little
attenuation, radio measurements allow the detection of very distant or highly
inclined showers. These waves can be recorded day and night, and provide a
bolometric measure of the leptonic shower component. LOPES is designed as a
digital radio interferometer using high bandwidths and fast data processing and
profits from the reconstructed air shower observables of KASCADE-Grande. The
LOPES antennas are absolutely amplitude calibrated allowing to reconstruct the
electric field strength which can be compared with predictions from detailed
Monte Carlo simulations. We report about the analysis of correlations present
in the radio signals measured by the LOPES 30 antenna array. Additionally,
LOPES operates antennas of a different type (LOPES-STAR) which are optimized
for an application at the Pierre Auger Observatory. Status, recent results of
the data analysis and further perspectives of LOPES and the possible large
scale application of this new detection technique are discussed.Comment: 8 pages, 10 figures, Contribution to the Arena 2008 conference, Rome,
June 200
Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum
We report a first measurement for ultra-high energy cosmic rays of the
correlation between the depth of shower maximum and the signal in the water
Cherenkov stations of air-showers registered simultaneously by the fluorescence
and the surface detectors of the Pierre Auger Observatory. Such a correlation
measurement is a unique feature of a hybrid air-shower observatory with
sensitivity to both the electromagnetic and muonic components. It allows an
accurate determination of the spread of primary masses in the cosmic-ray flux.
Up till now, constraints on the spread of primary masses have been dominated by
systematic uncertainties. The present correlation measurement is not affected
by systematics in the measurement of the depth of shower maximum or the signal
in the water Cherenkov stations. The analysis relies on general characteristics
of air showers and is thus robust also with respect to uncertainties in
hadronic event generators. The observed correlation in the energy range around
the `ankle' at differs significantly from
expectations for pure primary cosmic-ray compositions. A light composition made
up of proton and helium only is equally inconsistent with observations. The
data are explained well by a mixed composition including nuclei with mass . Scenarios such as the proton dip model, with almost pure compositions, are
thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray
flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
- …