8 research outputs found

    NUOVI REQUISITI DI FORMA NEL CONTRATTO

    No full text
    none1noneMORELATO E.Morelato, Elis

    Characterization of Markers of Botanical Origin and Other Compounds Extracted from Unifloral Honeys

    No full text
    The possibility of tracing the botanical and geographical origin of products such as honey has become more important because of market globalization. As a consequence, numerous analytical methods have been applied to the determination of honey authenticity. The scope of the present work is to chromatographically purify and characterize 23 compounds from organic extracts of unifloral (chestnut, linden, orange, acacia, eucalyptus, honeydew) and polyfloral honeys. Of these compounds, 17 were identified as specific markers and were used for botanical discrimination in a previous study based on multivariate statistical analysis of proton nuclear magnetic resonance (H-1 NMR) data. Together with the botanical markers, 6 other substances were isolated and characterized using NMR and mass spectrometry. These phytochemicals belong to several classes, that is, terpenes, organic acids, flavonoids, and others. For the first time, a diacylglyceryl ether and 5 other compounds present in different types of honey were identified and characterized

    An NMR-based metabolomic approach to identify the botanical origin of honey

    No full text
    NMR can be used in food analysis for origin discrimination and biomarker discovery using a metabolomic approach. Here, we present an example of this strategy to discriminate honey samples of different botanical origins. The NMR spectra of 353 chloroform extracts of selected honey samples were analyzed to detect possible markers of their floral origin. Six monofloral Italian honey types (acacia, linden, orange, eucalyptus, chestnut, and honeydew) were analyzed together with polyfloral samples. Specific markers were identified for each monofloral origin: two markers for acacia (chrysin and pinocembrin), one for chestnut (\u3b3-LACT-3-PKA), two for orange (8-hydroxylinalool and caffeine), one for eucalyptus (dehydrovomifoliol), one for honeydew (a diacylglycerilether) and two for linden (4-(1-hydroxy-1-methylethyl)cyclohexa-1,3-diene-carboxylic acid and 4-(1-methylethenyl)cyclohexa-1,3-diene-carboxylic acid). An NMR-based metabolomic approach that used O2PLS-DA multivariate data analysis allowed us to discriminate the different types of honey. Two different classifiers were built based on different multivariate techniques. The high precision of the classification obtained suggests that this approach could be useful to develop generally applicable metabolomic tools to discriminate the origin of honey samples
    corecore