15,660 research outputs found
Evaluation of spatial filtering on the accuracy of wheat area estimate
A 3 x 3 pixel spatial filter for postclassification was used for wheat classification to evaluate the effects of this procedure on the accuracy of area estimation using LANDSAT digital data obtained from a single pass. Quantitative analyses were carried out in five test sites (approx 40 sq km each) and t tests showed that filtering with threshold values significantly decreased errors of commission and omission. In area estimation filtering improved the overestimate of 4.5% to 2.7% and the root-mean-square error decreased from 126.18 ha to 107.02 ha. Extrapolating the same procedure of automatic classification using spatial filtering for postclassification to the whole study area, the accuracy in area estimate was improved from the overestimate of 10.9% to 9.7%. It is concluded that when single pass LANDSAT data is used for crop identification and area estimation the postclassification procedure using a spatial filter provides a more accurate area estimate by reducing classification errors
Comparison of wheat classification accuracy using different classifiers of the image-100 system
Classification results using single-cell and multi-cell signature acquisition options, a point-by-point Gaussian maximum-likelihood classifier, and K-means clustering of the Image-100 system are presented. Conclusions reached are that: a better indication of correct classification can be provided by using a test area which contains various cover types of the study area; classification accuracy should be evaluated considering both the percentages of correct classification and error of commission; supervised classification approaches are better than K-means clustering; Gaussian distribution maximum likelihood classifier is better than Single-cell and Multi-cell Signature Acquisition Options of the Image-100 system; and in order to obtain a high classification accuracy in a large and heterogeneous crop area, using Gaussian maximum-likelihood classifier, homogeneous spectral subclasses of the study crop should be created to derive training statistics
Greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness penalties
In this paper, we present greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs, and no machine idle time. The several heuristic versions differ, on the one hand, on the strategies involved in the construction of the greedy randomized schedules. On the other hand, these versions also differ on whether they employ only a final improvement step, or perform a local search after each greedy randomized construction. The proposed heuristics were compared with existing procedures, as well as with optimum solutions for some instance sizes. The computational results show that the proposed procedures clearly outperform their underlying dispatching heuristic, and the best of these procedures provide results that are quite close to the optimum. The best of the proposed algorithms is the new recommended heuristic for large instances, as well as a suitable alternative to the best existing procedure for the larger of the middle size instances.scheduling, single machine, early/tardy, quadratic penalties, greedy randomized dispatching rules
Irreversibility line and low-field grain-boundary pinning in electron-doped superconducting thin films
AC magnetic susceptibilities of electron-doped Pr_{1.85}Ce_{0.15}CuO_4 (PCCO)
and Sm_{1.85}Ce_{0.15}CuO_4 (SCCO) granular thin films have been measured as a
function of temperature and magnetic-field strength. Depending on the level of
homogeneity of our films, two different types of the irreversibility line (IL)
defined as the intergrain-loss peak temperature in the imaginary part of
susceptibility have been found. The obtained results are described via the
critical-state model taking into account the low-field grain-boundary pinning.
The extracted pinning-force densities in more granular SCCO films turn out to
be four times larger than their counterparts in less granular PCCO films
Universal R-C crossover in current-voltage characteristics for unshunted array of overdamped Nb-AlO_x-Nb Josephson junctions
We report on some unusual behavior of the measured current-voltage
characteristics (CVC) in artificially prepared two-dimensional unshunted array
of overdamped Nb-AlO_x-Nb Josephson junctions. The obtained nonlinear CVC are
found to exhibit a pronounced (and practically temperature independent)
crossover at some current I_{cr}=\left(\frac{1}{2\beta_C}-1\right)I_C from a
resistance R dominated state with V_R=R\sqrt{I^2-I_C^2} below I_{cr} to a
capacitance C dominated state with V_C=\sqrt{\frac{\hbar}{4eC}} \sqrt{I-I_C}
above I_{cr}. The origin of the observed behavior is discussed within a
single-plaquette approximation assuming the conventional RSJ model with a
finite capacitance and the Ambegaokar-Baratoff relation for the critical
current of the single junction
Dynamical reentrance and geometry imposed quantization effects in Nb-AlOx-Nb Josephson junction arrays
In this paper, we report on different phenomena related to the magnetic
properties of artificially prepared highly ordered (periodic) two-dimensional
Josephson junction arrays (2D-JJA) of both shunted and unshunted Nb-AlOx-Nb
tunnel junctions. By employing mutual-inductance measurements and using a
high-sensitive bridge, we have thoroughly investigated (both experimentally and
theoretically) the temperature and magnetic field dependence of complex AC
susceptibility of 2D-JJA. We also demonstrate the use of the scanning SQUID
microscope for imaging the local flux distribution within our unshunted arrays
Manifestation of geometric resonance in current dependence of AC susceptibility for unshunted array of Nb-AlOx-Nb Josephson junctions
A pronounced resonance-like structure has been observed in the current
dependence of AC susceptibility for two-dimensional array of unshunted
Nb-AlOx-Nb Josephson junctions. Using a single-plaquette approximation, we were
able to successfully fit our data assuming that resonance structure is related
to the geometric (inductive) properties of the array.Comment: to appear in Physica C (in press
Non-Local Product Rules for Percolation
Despite original claims of a first-order transition in the product rule model
proposed by Achlioptas et al. [Science 323, 1453 (2009)], recent studies
indicate that this percolation model, in fact, displays a continuous
transition. The distinctive scaling properties of the model at criticality,
however, strongly suggest that it should belong to a different universality
class than ordinary percolation. Here we introduce a generalization of the
product rule that reveals the effect of non-locality on the critical behavior
of the percolation process. Precisely, pairs of unoccupied bonds are chosen
according to a probability that decays as a power-law of their Manhattan
distance, and only that bond connecting clusters whose product of their sizes
is the smallest, becomes occupied. Interestingly, our results for
two-dimensional lattices at criticality shows that the power-law exponent of
the product rule has a significant influence on the finite-size scaling
exponents for the spanning cluster, the conducting backbone, and the cutting
bonds of the system. In all three cases, we observe a continuous variation from
ordinary to (non-local) explosive percolation exponents.Comment: 5 pages, 4 figure
- …