9 research outputs found

    Proteomique fonctionnelle des poly(ADP-Ribose) polymerases

    Get PDF
    L'ADN, support de l'information génétique, subit chaque jour de nombreuses attaques pouvant induire différents types de lésions. Que ce soit d'origine environnementale (agents chimiques), rayonnements ionisants) ou d'origine endogène (métabolisme de L'ADN, radicaux libres), chacun de ces agents peut provoquer des cassures simple ou double-brin dans la molécule d'ADN. Ces lésions doivent être détectées rapidement et réparées fidèlement, afin d'éviter d'engendrer une mutation pouvant déclencher une maladie telle le cancer, ou encore éviter de se transmettre à la descendance. Au cours de l'évolution, la cellule eucaryote a développé différentes voies spécifiques pour répondre à un stress génotoxique. Ainsi il existe un véritable réseau de surveillance et d'évaluation des dommages permettant à la cellule lésée de réparer l'ADN ou d'entrer en apoptose si les dommages sont trop importants. La poly(ADP-ribosyl)ation des protéines est une modification post-traductionnelle qui intervient rapidement dès qu'une cassure dans la molécule d'ADN est détectée. Le polymère est synthétisé à partir du NAD+ par une famille d'enzymes appelées PARP (poly(ADP-ribose)polymérase), dont le rôle principal est la maintien de l'intégrité du génome. Cette modification affecte les propriétés physico-chimiques ainsi que la fonction des protéines cibles. Celle-ci permet, entre autre, le recrutement des enzymes de réparation de l'ADN. Ce signal demeure toutefois transitoire, le polymère formé étant rapidement dégradé par la PARG (poly(ADP-ribose)glycohydrolase. Ce travail présente une analyse structurale de la PARP-3, un membre peu caractérisé de la famille PARP, ainsi qu'une analyse fonctionnelle de mutants de phosphorylation de la PARP-1 (premier article) qui montre que la phosphorylation du premier doigt de zinc de cette protéine altère son recrutement et sa persistance aux sites de cassure de l'ADN. Par ailleurs, de nombreuses évidences montrent que que la poly(ADP-ribosyl)ation des protéines peut survenir dans un contexte autre que les dommages à l'ADN, le second article présente les métabolismes qui peuvent être associés aux PARP-1 et 2 ainsi qu'à la PARG et monte un possible nouveau rôle biologique pour la PARP-1

    Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poly(ADP-ribose) polymerases (PARPs) catalyze the formation of poly(ADP-ribose) (pADPr), a post-translational modification involved in several important biological processes, namely surveillance of genome integrity, cell cycle progression, initiation of the DNA damage response, apoptosis, and regulation of transcription. Poly(ADP-ribose) glycohydrolase (PARG), on the other hand, catabolizes pADPr and thereby accounts for the transient nature of poly(ADP-ribosyl)ation. Our investigation of the interactomes of PARP-1, PARP-2, and PARG by affinity-purification mass spectrometry (AP-MS) aimed, on the one hand, to confirm current knowledge on these interactomes and, on the other hand, to discover new protein partners which could offer insights into PARPs and PARG functions.</p> <p>Results</p> <p>PARP-1, PARP-2, and PARG were immunoprecipitated from human cells, and pulled-down proteins were separated by gel electrophoresis prior to in-gel trypsin digestion. Peptides were identified by tandem mass spectrometry. Our AP-MS experiments resulted in the identifications of 179 interactions, 139 of which are novel interactions. Gene Ontology analysis of the identified protein interactors points to five biological processes in which PARP-1, PARP-2 and PARG may be involved: RNA metabolism for PARP-1, PARP-2 and PARG; DNA repair and apoptosis for PARP-1 and PARP-2; and glycolysis and cell cycle for PARP-1.</p> <p>Conclusions</p> <p>This study reveals several novel protein partners for PARP-1, PARP-2 and PARG. It provides a global view of the interactomes of these proteins as well as a roadmap to establish the systems biology of poly(ADP-ribose) metabolism.</p

    Expression, purification, crystallization and preliminary X-ray studies of the outer membrane efflux proteins OprM and OprN from Pseudomonas aeruginosa

    Full text link
    Two outer membrane factor family proteins, OprM and OprN, from a tripartite efflux pump found in P. aeruginosa were crystallized. A diffraction data set was collected to 3.8 Å resolution in the space group C2 for OprM crystals

    Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    Full text link
    International audiencePhosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG

    Omega-3 Fatty Acids Survey in Men under Active Surveillance for Prostate Cancer: from Intake to Prostate Tissue Level

    Full text link
    Dietary omega-3 fatty acids (&omega;3), particularly long-chain &omega;3 (LC&omega;3), have protective effects against prostate cancer (PCa) in experimental studies. Observational studies are conflicting, possibly because of the biomarker used. This study aimed at evaluating associations between grade reclassification and &omega;3 levels assessed in prostatic tissue, red blood cells (RBC), and diet. We conducted a validation cross-sectional study nested within a phase II clinical trial. We identified 157 men diagnosed with low-risk PCa who underwent a first active surveillance repeat prostate biopsy session. Fatty acid (FA) intake was assessed using a food frequency questionnaire and their levels measured in prostate tissue and RBC. Associations were evaluated using logistic regression. At first repeat biopsy session, 39 (25%) men had high-grade PCa (grade group &ge;2). We found that high LC&omega;3-eicosapentaenoic acid (EPA) level in prostate tissue (odds ratio (OR) 0.25; 95% (confidence interval (CI) 0.08&ndash;0.79; p-trend = 0.03) was associated with lower odds of high-grade PCa. Similar results were observed for LC&omega;3 dietary intake (OR 0.30; 95% CI 0.11-0.83; p-trend = 0.02) but no association for RBC. LC&omega;3-EPA levels in the target prostate tissue are inversely associated with high-grade PCa in men with low-risk PCa, supporting that prostate tissue FA, but not RBC FA, is a reliable biomarker of PCa risk
    corecore