33 research outputs found

    Regional Alterations of Protein Kinase C Activity Following Transient Cerebral Ischemia: Effects of Intraischemic Brain Temperature Modulation

    No full text
    : It is well established that ischemia‐induced release of glutamate and the subsequent activation of postsynaptic glutamate receptors are important processes involved in the development of ischemic neuronal damage. Moderate intraischemic hypothermia attenuates glutamate release and confers protection from ischemic damage, whereas mild intraischemic hyperthermia increases glutamate release and augments ischemic pathology. As protein kinase C (PKC) is implicated in neurotransmitter release and glutamate receptor‐mediated events, we evaluated the relationship between intraischemic brain temperature and PKC activity in brain regions known to be vulnerable or nonvulnerable to transient global ischemia. Twenty minutes of bilateral carotid artery occlusion plus hypotension were induced in rats in which intraischemic brain temperature was maintained at 30°C, 37°C, or 39°C. Prior to and following ischemia, brain temperature was 37°C in all groups. Cytosolic, membrane‐bound, and total PKC activities were determined in hippocampal, striatal, cortical, and thalamic homogenates at the end of ischemia and at 0.25–24 h of recirculation. PKC activity of control rats varied by region and were affected by altered brain temperature. For both membrane‐bound and cytosolic PKC, there was a significant temperature effect, and for membrane‐bound PKC there was also a significant effect of region. Rats with normothermic ischemia (37°C) showed extensive depressions of all PKC fractions. Hippocampus and striatum were noteworthy for depressions in PKC activity extending from the earliest (15 min) to the latest (24 h) recirculation times studied, whereas cortex showed PKC depressions chiefly during the first hour of recirculation, and the thalamic pattern was inconsistent. In contrast, in rats with hypothermic ischemia (30°C), significant overall effects were noted only for total PKC in thalamus, which showed depressed levels at both 1 and 24 h of recirculation. Rats with hyperthermic (39°C) ischemia also showed significant overall effects for the time course of membrane‐bound, cytosolic, and total PKC activities in the hippocampus, striatum, and cortex. However, no significant reductions in PKC indices were observed in the thalamus. For membrane‐bound PKC, significant temperature effects were noted for hippocampus, striatum, and cortex, but not for thalamus. For cytosolic, as well as total PKC, activity, significant temperature effects were noted for all four brain regions. Our results indicate that ischemia, followed by reperfusion, induces a significant reduction in PKC activity and that this process is highly influenced by the brain temperature during ischemia. Furthermore, our data also establish that differences exist in the response of PKC to ischemia/recirculation in vulnerable versus non‐vulnerable brain regions. These results suggest that PKC alterations may be an important factor involved in the modulatory effects of temperature on the outcome following transient global ischemia

    Developmental Regulation of Early Serotonergic Neuronal Differentiation: The Role of Brain-Derived Neurotrophic Factor and Membrane Depolarization

    Get PDF
    AbstractThe RN46A cell line was derived from Embryonic Day 13 rat medullary raphe cells by infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T antigen. This cell line is neuronally restricted and constitutively differentiates following a shift to nonpermissive temperature. Undifferentiated RN46A cells express low levels of tryptophan hydroxylase (TPH), low-affinity neurotrophin receptor (p75NTR), and trkB immunoreactivities, but no detectable levels of serotonin (5HT) immunoreactivity. TrkB, p75NTR, and TPH, but not 5HT, expressions increase with differentiation and treatment with brain-derived neurotrophic factor (BDNF). 5HT synthesis in RN46A cells requires initial treatment with BDNF, followed by growth under partial membrane depolarizing conditions. Embryonic raphe cultures treated similarly with BDNF and partial depolarizing conditions also demonstrate increased 5HT synthesis. The sodium-dependent transporter for 5HT reuptake is present in undifferentiated RN46A cells, and the apparent Km and Bmax are unchanged by differentiation or BDNF treatment and membrane depolarization. The high-affinity 5HT1A receptor is present in both undifferentiated and differentiated RN46A cells, and while the Kd is unaffected by differentiation or BDNF/membrane depolarization, the Bmax increases 20-fold after differentiation and 3.5-fold further with BDNF under depolarizing conditions. The expression of the synaptic vesicular monoamine transporter, as determined by the binding of [125I]iodovinyltetrabenazine, also increases in RN46A cells with differentiation. However, 5HT release is constitutive and is independent of acute membrane depolarization. Collectively these data indicate that distinct aspects of serotonin metabolism are differentially regulated during development and suggest that 5HT may function as a developmental signal in an autocrine loop during early serotonergic differentiation

    Intraischemic but Not Postischemic Brain Hypothermia Protects Chronically following Global Forebrain Ischemia in Rats

    No full text
    We investigated whether postischemic brain hypothermia (30°C) would permanently protect the hippocampus following global forebrain ischemia. Global ischemia was produced in anesthetized rats by bilateral carotid artery occlusion plus hypotension (50 mm Hg). In the postischemic hypothermic group, brain temperature was maintained at 37°C during the 10-min ischemic insult but reduced to 30°C starting 3 min into the recirculation period and maintained at 30°C for 3 h. In normothermic animals, intra- and postischemic brain temperature was maintained at 37°C. After recovery for 3 days, 7 days, or 2 months, the extent of CA1 hippocampal histologic injury was quantitated. At 3 days after ischemia, postischemic hypothermia significantly protected the hippocampal CA1 sector compared with normothermic animals. For example, within the medial, middle, and lateral CA1 subsectors, the numbers of normal neurons were increased 20-, 13-, and 9-fold by postischemic hypothermia (p < 0.01). At 7 days after the ischemic insult, however, the degree of postischemic hypothermic protection was significantly reduced. In this case, the numbers of normal neurons were increased an average of only threefold compared with normothermia. Ultrastructural analysis of 7-day postischemic hypothermic rats demonstrated CA1 pyramidal neurons showing variable degrees of injury surrounded by reactive astrocytes and microglial cells. At 2 months after the ischemic insult, no trend for protection was demonstrated. In contrast to postischemic hypothermia, significant protection was seen at 2 months following intraischemic hypothermia. These data indicate that intraischemic, but not postischemic, brain hypothermia provides chronic protection to the hippocampus after transient brain ischemia. The inability of postischemic hypothermia to protect chronically after 3 days could indicate that (a) postischemic hypothermia merely delays ischemic cell death and/or (b) the postischemic brain undergoes a secondary insult. In postischemic treatment protocols, chronic survival studies are required to determine accurately the ultimate histopathological outcome following global cerebral ischemia
    corecore