48 research outputs found

    Concept Learning with Energy-Based Models

    Full text link
    Many hallmarks of human intelligence, such as generalizing from limited experience, abstract reasoning and planning, analogical reasoning, creative problem solving, and capacity for language require the ability to consolidate experience into concepts, which act as basic building blocks of understanding and reasoning. We present a framework that defines a concept by an energy function over events in the environment, as well as an attention mask over entities participating in the event. Given few demonstration events, our method uses inference-time optimization procedure to generate events involving similar concepts or identify entities involved in the concept. We evaluate our framework on learning visual, quantitative, relational, temporal concepts from demonstration events in an unsupervised manner. Our approach is able to successfully generate and identify concepts in a few-shot setting and resulting learned concepts can be reused across environments. Example videos of our results are available at sites.google.com/site/energyconceptmodel

    Emergence of Grounded Compositional Language in Multi-Agent Populations

    Full text link
    By capturing statistical patterns in large corpora, machine learning has enabled significant advances in natural language processing, including in machine translation, question answering, and sentiment analysis. However, for agents to intelligently interact with humans, simply capturing the statistical patterns is insufficient. In this paper we investigate if, and how, grounded compositional language can emerge as a means to achieve goals in multi-agent populations. Towards this end, we propose a multi-agent learning environment and learning methods that bring about emergence of a basic compositional language. This language is represented as streams of abstract discrete symbols uttered by agents over time, but nonetheless has a coherent structure that possesses a defined vocabulary and syntax. We also observe emergence of non-verbal communication such as pointing and guiding when language communication is unavailable

    Interpretable and Pedagogical Examples

    Full text link
    Teachers intentionally pick the most informative examples to show their students. However, if the teacher and student are neural networks, the examples that the teacher network learns to give, although effective at teaching the student, are typically uninterpretable. We show that training the student and teacher iteratively, rather than jointly, can produce interpretable teaching strategies. We evaluate interpretability by (1) measuring the similarity of the teacher's emergent strategies to intuitive strategies in each domain and (2) conducting human experiments to evaluate how effective the teacher's strategies are at teaching humans. We show that the teacher network learns to select or generate interpretable, pedagogical examples to teach rule-based, probabilistic, boolean, and hierarchical concepts

    Prediction and Control with Temporal Segment Models

    Full text link
    We introduce a method for learning the dynamics of complex nonlinear systems based on deep generative models over temporal segments of states and actions. Unlike dynamics models that operate over individual discrete timesteps, we learn the distribution over future state trajectories conditioned on past state, past action, and planned future action trajectories, as well as a latent prior over action trajectories. Our approach is based on convolutional autoregressive models and variational autoencoders. It makes stable and accurate predictions over long horizons for complex, stochastic systems, effectively expressing uncertainty and modeling the effects of collisions, sensory noise, and action delays. The learned dynamics model and action prior can be used for end-to-end, fully differentiable trajectory optimization and model-based policy optimization, which we use to evaluate the performance and sample-efficiency of our method.Comment: camera-ready version, ICML 201

    Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control

    Full text link
    We propose a plan online and learn offline (POLO) framework for the setting where an agent, with an internal model, needs to continually act and learn in the world. Our work builds on the synergistic relationship between local model-based control, global value function learning, and exploration. We study how local trajectory optimization can cope with approximation errors in the value function, and can stabilize and accelerate value function learning. Conversely, we also study how approximate value functions can help reduce the planning horizon and allow for better policies beyond local solutions. Finally, we also demonstrate how trajectory optimization can be used to perform temporally coordinated exploration in conjunction with estimating uncertainty in value function approximation. This exploration is critical for fast and stable learning of the value function. Combining these components enable solutions to complex simulated control tasks, like humanoid locomotion and dexterous in-hand manipulation, in the equivalent of a few minutes of experience in the real world.Comment: The first two authors contributed equally. Accepted at ICLR 2019. Supplementary videos available at: https://sites.google.com/view/polo-mp

    Generative Temporal Difference Learning for Infinite-Horizon Prediction

    Full text link
    We introduce the γ\gamma-model, a predictive model of environment dynamics with an infinite probabilistic horizon. Replacing standard single-step models with γ\gamma-models leads to generalizations of the procedures central to model-based control, including the model rollout and model-based value estimation. The γ\gamma-model, trained with a generative reinterpretation of temporal difference learning, is a natural continuous analogue of the successor representation and a hybrid between model-free and model-based mechanisms. Like a value function, it contains information about the long-term future; like a standard predictive model, it is independent of task reward. We instantiate the γ\gamma-model as both a generative adversarial network and normalizing flow, discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors, and empirically investigate its utility for prediction and control.Comment: NeurIPS 2020. Project page at: https://gammamodels.github.io

    A Game Theoretic Framework for Model Based Reinforcement Learning

    Full text link
    Model-based reinforcement learning (MBRL) has recently gained immense interest due to its potential for sample efficiency and ability to incorporate off-policy data. However, designing stable and efficient MBRL algorithms using rich function approximators have remained challenging. To help expose the practical challenges in MBRL and simplify algorithm design from the lens of abstraction, we develop a new framework that casts MBRL as a game between: (1) a policy player, which attempts to maximize rewards under the learned model; (2) a model player, which attempts to fit the real-world data collected by the policy player. For algorithm development, we construct a Stackelberg game between the two players, and show that it can be solved with approximate bi-level optimization. This gives rise to two natural families of algorithms for MBRL based on which player is chosen as the leader in the Stackelberg game. Together, they encapsulate, unify, and generalize many previous MBRL algorithms. Furthermore, our framework is consistent with and provides a clear basis for heuristics known to be important in practice from prior works. Finally, through experiments we validate that our proposed algorithms are highly sample efficient, match the asymptotic performance of model-free policy gradient, and scale gracefully to high-dimensional tasks like dexterous hand manipulation.Comment: Project webpage: https://sites.google.com/view/mbrl-gam

    One Policy to Control Them All: Shared Modular Policies for Agent-Agnostic Control

    Full text link
    Reinforcement learning is typically concerned with learning control policies tailored to a particular agent. We investigate whether there exists a single global policy that can generalize to control a wide variety of agent morphologies -- ones in which even dimensionality of state and action spaces changes. We propose to express this global policy as a collection of identical modular neural networks, dubbed as Shared Modular Policies (SMP), that correspond to each of the agent's actuators. Every module is only responsible for controlling its corresponding actuator and receives information from only its local sensors. In addition, messages are passed between modules, propagating information between distant modules. We show that a single modular policy can successfully generate locomotion behaviors for several planar agents with different skeletal structures such as monopod hoppers, quadrupeds, bipeds, and generalize to variants not seen during training -- a process that would normally require training and manual hyperparameter tuning for each morphology. We observe that a wide variety of drastically diverse locomotion styles across morphologies as well as centralized coordination emerges via message passing between decentralized modules purely from the reinforcement learning objective. Videos and code at https://huangwl18.github.io/modular-rl/Comment: Accepted at ICML 2020. Videos and code at https://huangwl18.github.io/modular-rl

    Model Based Planning with Energy Based Models

    Full text link
    Model-based planning holds great promise for improving both sample efficiency and generalization in reinforcement learning (RL). We show that energy-based models (EBMs) are a promising class of models to use for model-based planning. EBMs naturally support inference of intermediate states given start and goal state distributions. We provide an online algorithm to train EBMs while interacting with the environment, and show that EBMs allow for significantly better online learning than corresponding feed-forward networks. We further show that EBMs support maximum entropy state inference and are able to generate diverse state space plans. We show that inference purely in state space - without planning actions - allows for better generalization to previously unseen obstacles in the environment and prevents the planner from exploiting the dynamics model by applying uncharacteristic action sequences. Finally, we show that online EBM training naturally leads to intentionally planned state exploration which performs significantly better than random exploration.Comment: CoRL 201

    Emergent Complexity via Multi-Agent Competition

    Full text link
    Reinforcement learning algorithms can train agents that solve problems in complex, interesting environments. Normally, the complexity of the trained agent is closely related to the complexity of the environment. This suggests that a highly capable agent requires a complex environment for training. In this paper, we point out that a competitive multi-agent environment trained with self-play can produce behaviors that are far more complex than the environment itself. We also point out that such environments come with a natural curriculum, because for any skill level, an environment full of agents of this level will have the right level of difficulty. This work introduces several competitive multi-agent environments where agents compete in a 3D world with simulated physics. The trained agents learn a wide variety of complex and interesting skills, even though the environment themselves are relatively simple. The skills include behaviors such as running, blocking, ducking, tackling, fooling opponents, kicking, and defending using both arms and legs. A highlight of the learned behaviors can be found here: https://goo.gl/eR7fbXComment: Published as a conference paper at ICLR 201
    corecore