1,189 research outputs found
Grain opacity and the bulk composition of extrasolar planets. I. Results from scaling the ISM opacity
The opacity due to grains in the envelope of a protoplanet regulates the
accretion rate of gas during formation, thus the final bulk composition of
planets with primordial H/He is a function of it. Observationally, for
exoplanets with known mass and radius it is possible to estimate the bulk
composition via internal structure models. We first determine the reduction
factor of the ISM grain opacity f_opa that leads to gas accretion rates
consistent with grain evolution models. We then compare the bulk composition of
synthetic low-mass and giant planets at different f_opa with observations. For
f_opa=1 (full ISM opacity) the synthetic low-mass planets have too small radii,
i.e., too low envelope masses compared to observations. At f_opa=0.003, the
value calibrated with the grain evolution models, synthetic and actual planets
occupy similar mass-radius loci. The mean enrichment of giant planets relative
to the host star as a function of planet mass M can be approximated as
Z_p/Z_star = beta*(M/M_Jup)^alpha. We find alpha=-0.7 independent of f_opa in
synthetic populations in agreement with the observational result (-0.71+-0.10).
The absolute enrichment level decreases from beta=8.5 at f_opa=1 to 3.5 at
f_opa=0. At f_opa=0.003 one finds beta=7.2 which is similar to the
observational result (6.3+-1.0). We thus find observational hints that the
opacity in protoplanetary atmospheres is much smaller than in the ISM even if
the specific value of the grain opacity cannot be constrained here. The result
for the enrichment of giant planets helps to distinguish core accretion and
gravitational instability. In the simplest picture of core accretion where
first a critical core forms and afterwards only gas is added, alpha=-1. If a
core accretes all planetesimals inside the feeding zone, alpha=-2/3. The
observational result lies between these values, pointing to core accretion as
the formation mechanism.Comment: 21 pages, 15 figures. Accepted for A&
Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation
Context: Several recent studies have found that planet migration in adiabatic
discs differs significantly from migration in isothermal discs. Depending on
the thermodynamic conditions, i.e., the effectiveness of radiative cooling, and
the radial surface density profile, planets migrate inward or outward. Clearly,
this will influence the semimajor axis - mass distribution of planets as
predicted by population synthesis simulations. Aims: Our goal is to study the
global effects of radiative cooling, viscous torque desaturation and gap
opening as well as stellar irradiation on the tidal migration of a synthetic
planet population. Methods: We combine results from several analytical studies
and 3D hydrodynamic simulations in a new semi-analytical migration model for
the application in our planet population synthesis calculations. Results: We
find a good agreement of our model with torques obtained in a 3D radiative
hydrodynamic simulations. We find three convergence zones in a typical disc,
towards which planets migrate from the in- and outside, affecting strongly the
migration behavior of low-mass planets. Interestingly, this leads to slow type
II like migration behavior for low-mass planets captured in those zones even
without an ad hoc migration rate reduction factor or a yet to be defined
halting mechanism. This means that the new prescription of migration including
non-isothermal effects makes the preciously widely used artificial migration
rate reduction factor obsolete. Conclusions: Outward migration in parts of a
disc makes some planets survive long enough to become massive. The convergence
zones lead to a potentially observable accumulations of low-mass planets at
certain semimajor axes. Our results indicate that further studies of the mass
where the corotation torque saturates will be needed since its value has a
major impact on the properties of planet populations.Comment: 18 pages, 15 figures. Accepted for A&
Application of recent results on the orbital migration of low mass planets: convergence zones
Previous models of the combined growth and migration of protoplanets needed
large ad hoc reduction factors for the type I migration rate as found in the
isothermal approximation. In order to eliminate these factors, a simple
semi-analytical model is presented that incorporates recent results on the
migration of low mass planets in non-isothermal disks. It allows for outward
migration. The model is used to conduct planetary populations synthesis
calculations. Two points with zero torque are found in the disks. Planets
migrate both in- and outward towards these convergence zones. They could be
important for accelerating planetary growth by concentrating matter in one
point. We also find that the updated type I migration models allow the
formation of both close-in low mass planets, but also of giant planets at large
semimajor axes. The problem of too rapid migration is significantly mitigated.Comment: 4 pages, 3 figures. Proceedings of the IAU Symposium 276, 2010: The
Astrophysics of Planetary Systems: Formation, Structure, and Dynamical
Evolution, ed. A. Sozzetti, M. G. Lattanzi, and A. P. Bos
Properties and occurrence rates of exoplanet candidates as a function of host star metallicity from the DR25 catalog
Correlations between the occurrence rate of exoplanets and their host star
properties provide important clues about the planet formation processes. We
studied the dependence of the observed properties of exoplanets (radius, mass,
and orbital period) as a function of their host star metallicity. We analyzed
the planetary radii and orbital periods of over 2800 candidates from
the latest data release DR25 (Q1-Q17) with revised planetary radii
based on ~DR2 as a function of host star metallicity (from the Q1-Q17
(DR25) stellar and planet catalog). With a much larger sample and improved
radius measurements, we are able to reconfirm previous results in the
literature. We show that the average metallicity of the host star increases as
the radius of the planet increases. We demonstrate this by first calculating
the average host star metallicity for different radius bins and then
supplementing these results by calculating the occurrence rate as a function of
planetary radius and host star metallicity. We find a similar trend between
host star metallicity and planet mass: the average host star metallicity
increases with increasing planet mass. This trend, however, reverses for masses
: host star metallicity drops with increasing planetary
mass. We further examined the correlation between the host star metallicity and
the orbital period of the planet. We find that for planets with orbital periods
less than 10 days, the average metallicity of the host star is higher than that
for planets with periods greater than 10 days.Comment: 14 pages, 13 Figures, Accepted for publication in The Astronomical
Journa
Characterization of exoplanets from their formation I: Models of combined planet formation and evolution
A first characterization of many exoplanets has recently been achieved by the
observational determination of their radius. For some planets, a measurement of
the luminosity has also been possible, with many more directly imaged planets
expected in the future. The statistical characterization of exoplanets through
their mass-radius and mass-luminosity diagram is thus becoming possible. This
is for planet formation and evolution theory of similar importance as the
mass-distance diagram. Our aim in this and a companion paper is to extend our
formation model into a coupled formation and evolution model. We want to
calculate in a self-consistent way all basic characteristics (M,a,R,L) of a
planet and use the model for population synthesis calculations. Here we show
how we solve the structure equations describing the gaseous envelope not only
during the early formation phase, but also during gas runaway accretion, and
during the evolutionary phase at constant mass on Gyr timescales. We then study
the in situ formation and evolution of Jupiter, the mass-radius relationship of
giants, the influence of the core mass on the radius and the luminosity both in
the "hot start" and the "cold start" scenario. We put special emphasis on the
comparison with other models. We find that our results agree very well with
those of more complex models, despite a number of simplifications. The upgraded
model yields the most important characteristics of a planet from its beginning
as a seed embryo to a Gyr old planet. This is the case for all planets in a
synthetic planetary population. Therefore, we can now use self-consistently the
statistical constraints coming from all major observational techniques. This is
important in a time where different techniques yield constraints on very
diverse sub-populations of planets, and where its is challenging to put all
these constraints together in one coherent picture.Comment: Accepted to A&A. Identical as v1 except for additional online data
reference and corrected typos. 23 pages, 11 figure
Compliance of the L5-S1 spinal unit: a comparative study between an unconstrained and a partially constrained system
A comparison between an unconstrained and a partially constrained system for in vitro biomechanical testing of the L5-S1 spinal unit was conducted. The objective was to compare the compliance and the coupling of the L5-S1 unit measured with an unconstrained and a partially constrained test for the three major physiological motions of the human spine. Very few studies have compared unconstrained and partially constrained testing systems using the same cadaveric functional spinal units (FSUs). Seven human L5-S1 units were therefore tested on both a pneumatic, unconstrained, and a servohydraulic, partially constrained system. Each FSU was tested along three motions: flexion-extension (FE), lateral bending (LB) and axial rotation (AR). The obtained kinematics on both systems is not equivalent, except for the FE case, where both motions are similar. The directions of coupled motions were similar for both tests, but their magnitudes were smaller in the partially constrained configuration. The use of a partially constrained system to characterize LB and AR of the lumbosacral FSU decreased significantly the measured stiffness of the segment. The unconstrained system is today's "gold standard” for the characterization of FSUs. The selected partially constrained method seems also to be an appropriate way to characterize FSUs for specific applications. Care should be taken using the latter method when the coupled motions are importan
Detection of Neptune-size planetary candidates with CoRoT data. Comparison with the planet occurrence rate derived from Kepler
[Abridged] Context. The CoRoT space mission has been searching for transiting
planets since the end of December 2006. Aims. We aim to investigate the
capability of CoRoT to detect small-size transiting planets in short-period
orbits, and to compare the number of CoRoT planets with 2 \leq R_p \leq 4
Rearth with the occurrence rate of small-size planets provided by the
distribution of Kepler planetary candidates (Howard et al. 2012). Methods. We
performed a test that simulates transits of super-Earths and Neptunes in real
CoRoT light curves and searches for them blindly by using the LAM transit
detection pipeline. Results. The CoRoT detection rate of planets with radius
between 2 and 4 Rearth and orbital period P \leq 20 days is 59% (31%) around
stars brighter than r'=14.0 (15.5). By properly taking the CoRoT detection rate
for Neptune-size planets and the transit probability into account, we found
that according to the Kepler planet occurrence rate, CoRoT should have
discovered 12 \pm 2 Neptunes orbiting G and K dwarfs with P \leq 17 days in six
observational runs. This estimate must be compared with the validated Neptune
CoRoT-24b and five CoRoT planetary candidates in the considered range of
planetary radii. We thus found a disagreement with expectations from Kepler at
3 \sigma or 5 \sigma, assuming a blend fraction of 0% (six Neptunes) and 100%
(one Neptune) for these candidates. Conclusions. This underabundance of CoRoT
Neptunes with respect to Kepler may be due to several reasons. Regardless of
the origin of the disagreement, which needs to be investigated in more detail,
the noticeable deficiency of CoRoT Neptunes at short orbital periods seems to
indirectly support the general trend found in Kepler data, i.e. that the
frequency of small-size planets increases with increasing orbital periods and
decreasing planet radii.Comment: 10 pages, 7 figures. Accepted for publication in A&
Discovery of the Coldest Imaged Companion of a Sun-Like Star
We present the discovery of a brown dwarf or possible planet at a projected
separation of 1.9" = 29 AU around the star GJ 758, placing it between the
separations at which substellar companions are expected to form by core
accretion (~5 AU) or direct gravitational collapse (typically >100 AU). The
object was detected by direct imaging of its thermal glow with Subaru/HiCIAO.
At 10-40 times the mass of Jupiter and a temperature of 550-640 K, GJ 758 B
constitutes one of the few known T-type companions, and the coldest ever to be
imaged in thermal light around a Sun-like star. Its orbit is likely eccentric
and of a size comparable to Pluto's orbit, possibly as a result of
gravitational scattering or outward migration. A candidate second companion is
detected at 1.2" at one epoch.Comment: 5 pages, 3 figures, 2 tables. Accepted for publication in ApJ Letter
Extrasolar planet population synthesis IV. Correlations with disk metallicity, mass and lifetime
Context. This is the fourth paper in a series showing the results of planet
population synthesis calculations.
Aims. Our goal in this paper is to systematically study the effects of
important disk properties, namely disk metallicity, mass and lifetime on
fundamental planetary properties.
Methods. For a large number of protoplanetary disks we calculate a population
of planets with our core accretion formation model including planet migration
and disk evolution.
Results. We find a large number of correlations: Regarding the planetary
initial mass function, metallicity, disk mass and disk lifetime have different
roles: For high [Fe/H], giant planets are more frequent. For high disk masses,
giant planets are more massive. For long disk lifetimes, giant planets are both
more frequent and massive. At low metallicities, very massive giant planets
cannot form, but otherwise giant planet mass and metallicity are uncorrelated.
In contrast, planet masses and disk gas masses are correlated. The sweet spot
for giant planet formation is at 5 AU. In- and outside this distance, higher
planetesimals surface densities are necessary. Low metallicities can be
compensated by high disk masses, and vice versa, but not ad infinitum. At low
metallicities, giant planets only form outside the ice line, while at high
metallicities, giant planet formation occurs throughout the disk. The extent of
migration increases with disk mass and lifetime and usually decreases with
metallicity. No clear correlation of metallicity and the semimajor axis of
giant planets exists because in low [Fe/H] disks, planets start further out,
but migrate more, whereas for high [Fe/H] they start further in, but migrate
less. Close-in low mass planets have a lower mean metallicity than Hot
Jupiters.
Conclusions. The properties of protoplanetary disks are decisive for the
properties of planets, and leave many imprints.Comment: 23 pages, 16 figures. Accepted for A&
On type-I migration near opacity transitions. A generalized Lindblad torque formula for planetary population synthesis
We give an expression for the Lindblad torque acting on a low-mass planet
embedded in a protoplanetary disk that is valid even at locations where the
surface density or temperature profile cannot be approximated by a power law,
such as an opacity transition. At such locations, the Lindblad torque is known
to suffer strong deviation from its standard value, with potentially important
implications for type I migration, but the full treatment of the tidal
interaction is cumbersome and not well suited to models of planetary population
synthesis. The expression that we propose retains the simplicity of the
standard Lindblad torque formula and gives results that accurately reproduce
those of numerical simulations, even at locations where the disk temperature
undergoes abrupt changes. Our study is conducted by means of customized
numerical simulations in the low-mass regime, in locally isothermal disks, and
compared to linear torque estimates obtained by summing fully analytic torque
estimates at each Lindblad resonance. The functional dependence of our modified
Lindblad torque expression is suggested by an estimate of the shift of the
Lindblad resonances that mostly contribute to the torque, in a disk with sharp
gradients of temperature or surface density, while the numerical coefficients
of the new terms are adjusted to seek agreement with numerics. As side results,
we find that the vortensity related corotation torque undergoes a boost at an
opacity transition that can counteract migration, and we find evidence from
numerical simulations that the linear corotation torque has a non-negligible
dependency upon the temperature gradient, in a locally isothermal disk.Comment: Appeared in special issue of "Celestial Mechanics and Dynamical
Astronomy" on Extrasolar Planetary System
- …