195 research outputs found
Recommended from our members
Micromixing and microchannel design: Vortex shape and entropy
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.In very recent years microdevices, due to their potency in replacing large-scale conventional laboratory instrumentation, are becoming a fast and low cost technology for the treatment of several chemical and biological processes. In particular microfluidics has been massively investigated, aiming at improving the performance of chemical reactors. This is because of the fact that reaction is often an interface phenomenon where the greater the surface to volume ratio, the higher the reaction speed, and microscale mixing increases the interfacial area (in terms of mixing-induced-by-vortices generation). However, microfluidic systems suffer from the limitation that they are characterized mostly by very low Reynolds numbers, with the consequence that (i) they cannot take advantage from the turbulence mixing support, and (ii) viscosity hampers proper vortex detection. Therefore, the proper design of micro-channels (MCs) becomes essential. In this framework, several geometries have been proposed to induce mixing vortices in MCs. However a quantitative comparison between proposed geometries in terms of their passive mixing
potency can be done only after proper definition of vortex formation (topology, size) and mixing performance. The objective of this study is to test the ability of different fluid dynamic metrics in vortex
detection and mixing effectiveness in micromixers. This is done numerically solving different conditions for the flow in a classic passive mixer, a ring shaped MC. We speculate that MCs design could take advantage from fluidic metrics able to rank properly flow related mixing
Does the shape of inflow velocity profiles affect hemodynamics in computational coronary artery models?
In this study, the impact of velocity inflow profiles shape on computational hemodynamic models of coronary arteries was investigated. To this purpose, 3D realistic velocity profiles were generated analytically and prescribed as inflow boundary condition and the impact on near-wall and intravascular flow was assessed. The results suggest that the impact of the shape of inflow velocity profiles on simulated coronary hemodynamics is limited to the proximal segment, while the global hemodynamics is poorly affected
Does the inflow velocity profile influence physiologically relevant flow patterns in computational hemodynamic models of left anterior descending coronary artery?
Patient-specific computational fluid dynamics is a powerful tool for investigating the hemodynamic risk in coronary arteries. Proper setting of flow boundary conditions in computational hemodynamic models of coronary arteries is one of the sources of uncertainty weakening the findings of in silico experiments, in consequence of the challenging task of obtaining in vivo 3D flow measurements within the clinical framework. Accordingly, in this study we evaluated the influence of assumptions on inflow velocity profile shape on coronary artery hemodynamics. To do that, (1) ten left anterior descending coronary artery (LAD) geometries were reconstructed from clinical angiography, and (2) eleven velocity profiles with realistic 3D features such as eccentricity and differently shaped (single- and double-vortex) secondary flows were generated analytically and imposed as inflow boundary conditions. Wall shear stress and helicity-based descriptors obtained prescribing the commonly used parabolic velocity profile were compared with those obtained with the other velocity profiles. Our findings indicated that the imposition of idealized velocity profiles as inflow boundary condition is acceptable as long the results of the proximal vessel segment are not considered, in LAD coronary arteries. As a pragmatic rule of thumb, a conservative estimation of the length of influence of the shape of the inflow velocity profile on LAD local hemodynamics can be given by the theoretical entrance length for cylindrical conduits in laminar flow conditions
Deciphering ascending thoracic aortic aneurysm hemodynamics in relation to biomechanical properties
The degeneration of the arterial wall at the basis of the ascending thoracic aortic aneurysm (ATAA) is a complex multifactorial process, which may lead to clinical complications and, ultimately, death. Individual genetic, biological or hemodynamic factors are inadequate to explain the heterogeneity of ATAA development/progression mechanisms, thus stimulating the analysis of their complex interplay. Here the disruption of the hemodynamic environment in the ATAA is investigated integrating patient-specific computational hemodynamics, CT-based in vivo estimation of local aortic stiffness and advanced fluid mechanics methods of analysis. The final aims are (1) deciphering the ATAA spatiotemporal hemodynamic complexity and its link to near-wall topological features, and (2) identifying the existing links between arterial wall degeneration and hemodynamic insult. Technically, two methodologies are applied to computational hemodynamics data, the wall shear stress (WSS) topological skeleton analysis, and the Complex Networks theory. The same analysis was extended to the healthy aorta. As main findings of the study, we report that: (1) different spatiotemporal heterogeneity characterizes the ATAA and healthy hemodynamics, that markedly reflect on their WSS topological skeleton features; (2) a link (stronger than canonical WSS-based descriptors) emerges between the variation of contraction/expansion action exerted by WSS on the endothelium along the cardiac cycle, and ATAA wall stiffness. The findings of the study suggest the use of advanced methods for a deeper understanding of the hemodynamics disruption in ATAA, and candidate WSS topological skeleton features as promising indicators of local wall degeneration
Mismatch between morphological and functional assessment of the length of coronary artery disease
Background: Morphological evaluation of coronary lesion length is a paramount step during invasive assessment of coronary artery disease. Likewise, the extent of epicardial pressure losses can be measured using longitudinal vessel interrogation with fractional flow reserve (FFR) pullbacks. We aimed to quantify the mismatch in lesion length between morphological (based on quantitative coronary angiography, QCA, and optical coherence tomography, OCT) and functional evaluations. Methods: This is a prospective and multicenter study of patients evaluated by QCA, OCT and motorized fractional flow reserve pullbacks (mFFR). The difference in lesion length between the functional and anatomical evaluations was referred to as FAM. Results: 117 patients (131 vessels) were included. Median lesion length derived from angiography was 16.05 mm [11.40–22.05], from OCT was 28.00 mm [16.63–38.00] and from mFFR 67.12 mm [25.38–91.37]. There was no correlation between QCA and mFFR lesion length (r = 0.124, 95% CI -0.168-0.396, p = 0.390). OCT lesion length did correlate with mFFR (r = 0.469, 95% CI 0.156–0.696, p = 0.004). FAM was strongly associated with the improvement in vessel conductance with percutaneous coronary intervention (PCI), higher mismatch was associated with lower post-PCI FFR. Conclusions: Lesion length assessment differs between morphological and functional evaluations. The morphological-functional mismatch in lesion length is frequent, and influences the results of PCI in terms of post-PCI FFR. Integration of the extent of pressure losses provides clinically relevant information that may be useful for clinical decision-making concerning revascularization strategy
An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations
In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a similar to 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a similar to 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic proosteogenic effect of combined physical stimulations
Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs
Physical stimuli are crucial for the structural and functional maturation of tissues both in vivo and in vitro. In tissue engineering applications, bioreactors have become fundamental and effective tools for providing biomimetic culture conditions that recapitulate the native physical stimuli. In addition, bioreactors play a key role in assuring strict control, automation, and standardization in the production process of cell-based products for future clinical application. In this study, a compact, easy-to-use, tunable stretch bioreactor is proposed. Based on customizable and low-cost technological solutions, the bioreactor was designed for providing tunable mechanical stretch for biomimetic dynamic culture of different engineered tissues. In-house validation tests demonstrated the accuracy and repeatability of the imposed mechanical stimulation. Proof of concepts biological tests performed on engineered cardiac constructs, based on decellularized human skin scaffolds seeded with human cardiac progenitor cells, confirmed the bioreactor Good Laboratory Practice compliance and ease of use, and the effectiveness of the delivered cyclic stretch stimulation on the cardiac construct maturation
A low-cost scalable 3D-printed sample-holder for agitation-based decellularization of biological tissues
Decellularized extracellular matrix is one of the most promising biological scaffold supporting in vitro tissue growth and in vivo tissue regeneration in both preclinical research and clinical practice. In case of thick tissues or even organs, conventional static decellularization methods based on chemical or enzymatic treatments are not effective in removing the native cellular material without affecting the extracellular matrix. To overcome this limitation, dynamic decellularization methods, mostly based on perfusion and agitation, have been proposed. In this study, we developed a low-cost scalable 3D-printed sample-holder for agitation-based decellularization purposes, designed for treating multiple specimens simultaneously and for improving efficiency, homogeneity and reproducibility of the decellularization treatment with respect to conventional agitation-based approaches. In detail, the proposed sample-holder is able to house up to four specimens and, immersed in the decellularizing solution within a beaker placed on a magnetic stirrer, to expose them to convective flow, enhancing the solution transport through the specimens while protecting them. Computational fluid dynamics analyses were performed to investigate the fluid phenomena establishing within the beaker and to support the sample-holder design. Exploratory biological tests performed on human skin specimens demonstrated that the sample-holder reduces process duration and increases treatment homogeneity and reproducibility
- …