27 research outputs found

    Stability and Instability of Extreme Reissner-Nordstr\"om Black Hole Spacetimes for Linear Scalar Perturbations I

    Full text link
    We study the problem of stability and instability of extreme Reissner-Nordstrom spacetimes for linear scalar perturbations. Specifically, we consider solutions to the linear wave equation on a suitable globally hyperbolic subset of such a spacetime, arising from regular initial data prescribed on a Cauchy hypersurface crossing the future event horizon. We obtain boundedness, decay and non-decay results. Our estimates hold up to and including the horizon. The fundamental new aspect of this problem is the degeneracy of the redshift on the event horizon. Several new analytical features of degenerate horizons are also presented.Comment: 37 pages, 11 figures; published version of results contained in the first part of arXiv:1006.0283, various new results adde

    Isometric Immersions and Compensated Compactness

    Full text link
    A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold M2{\mathcal M}^2 which can be realized as isometric immersions into R3\R^3. This problem can be formulated as initial and/or boundary value problems for a system of nonlinear partial differential equations of mixed elliptic-hyperbolic type whose mathematical theory is largely incomplete. In this paper, we develop a general approach, which combines a fluid dynamic formulation of balance laws for the Gauss-Codazzi system with a compensated compactness framework, to deal with the initial and/or boundary value problems for isometric immersions in R3\R^3. The compensated compactness framework formed here is a natural formulation to ensure the weak continuity of the Gauss-Codazzi system for approximate solutions, which yields the isometric realization of two-dimensional surfaces in R3\R^3. As a first application of this approach, we study the isometric immersion problem for two-dimensional Riemannian manifolds with strictly negative Gauss curvature. We prove that there exists a C1,1C^{1,1} isometric immersion of the two-dimensional manifold in R3\R^3 satisfying our prescribed initial conditions. TComment: 25 pages, 6 figue

    Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field

    Full text link
    The long-time asymptotics is analyzed for all finite energy solutions to a model U(1)-invariant nonlinear Klein-Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as time goes to plus or minus infinity to the set of all ``nonlinear eigenfunctions'' of the form \psi(x)e\sp{-i\omega t}. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation. We justify this mechanism by the following novel strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time-spectrum in the spectral gap [-m,m] and satisfies the original equation. This equation implies the key spectral inclusion for spectrum of the nonlinear term. Then the application of the Titchmarsh Convolution Theorem reduces the spectrum of each omega-limit trajectory to a single harmonic in [-m,m]. The research is inspired by Bohr's postulate on quantum transitions and Schroedinger's identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled U(1)-invariant Maxwell-Schroedinger and Maxwell-Dirac equations.Comment: 29 pages, 1 figur

    Multidimensional Conservation Laws: Overview, Problems, and Perspective

    Full text link
    Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented and analyzed with emphasis on the prototypes that have been solved or may be expected to be solved rigorously at least for some cases. In particular, multidimensional steady supersonic problems and transonic problems, shock reflection-diffraction problems, and related effective nonlinear approaches are analyzed. A theory of divergence-measure vector fields and related analytical frameworks for the analysis of entropy solutions are discussed.Comment: 43 pages, 3 figure

    A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds

    Full text link
    We consider Kerr spacetimes with parameters a and M such that |a|<< M, Kerr-Newman spacetimes with parameters |Q|<< M, |a|<< M, and more generally, stationary axisymmetric black hole exterior spacetimes which are sufficiently close to a Schwarzschild metric with parameter M>0, with appropriate geometric assumptions on the plane spanned by the Killing fields. We show uniform boundedness on the exterior for sufficiently regular solutions to the scalar homogeneous wave equation. In particular, the bound holds up to and including the event horizon. No unphysical restrictions are imposed on the behaviour of the solution near the bifurcation surface of the event horizon. The pointwise estimate derives in fact from the uniform boundedness of a positive definite energy flux. Note that in view of the very general assumptions, the separability properties of the wave equation on the Kerr background are not used.Comment: 71 pages, 3 figure

    Analysis of preconditioning and multigrid for Euler flows with low-subsonic regions

    Get PDF
    For subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior of multigrid-accelerated point Gauss-Seidel relaxation is analyzed. Error decay by convection across domain boundaries is also discussed. A fix to poor convergence rates at low Mach numbers is sought in replacing the point relaxation applied to unconditioned Euler equations, by locally implicit “time”-stepping applied to preconditioned Euler equations. The locally implicit iteration step is optimized for good damping of high-frequency errors. Numerical inaccuracy at low Mach numbers is also addressed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41714/1/10444_2005_Article_BF02123476.pd
    corecore