12 research outputs found

    The BAFF/APRIL system in SLE pathogenesis.

    Get PDF
    Systemic lupus erythematosus (SLE) is characterized by multisystem immune-mediated injury in the setting of autoimmunity to nuclear antigens. The clinical heterogeneity of SLE, the absence of universally agreed clinical trial end points, and the paucity of validated therapeutic targets have, historically, contributed to a lack of novel treatments for SLE. However, in 2011, a therapeutic monoclonal antibody that neutralizes the cytokine TNF ligand superfamily member 13B (also known as B-cell-activating factor of the TNF family [BAFF]), belimumab, became the first targeted therapy for SLE to have efficacy in a randomized clinical trial. Because of its specificity, the efficacy of belimumab provides an opportunity to increase understanding of SLE pathophysiology. Although belimumab depletes B cells, this effect is not as powerful as that of other B-cell-directed therapies that have not been proven efficacious in randomized clinical trials. In this article, therefore, we review results suggesting that neutralizing BAFF can have effects on the immune system other than depletion of B cells. We also identify aspects of the BAFF system for which data in relation to SLE are still missing, and we suggest studies to investigate the pathogenesis of SLE and ways to refine anti-BAFF therapies. The role of a related cytokine, TNF ligand superfamily member 13 (also known as a proliferation-inducing ligand [APRIL]) in SLE is much less well understood, and hence this review focuses on BAFF

    Regulation of annexin I in rheumatoid synovial cells by glucocorticoids and interleukin-1

    Get PDF
    10.1155/MI/2006/73835Mediators of Inflammation20067383

    Sequence-dependent inhibition of cGAS and TLR9 DNA sensing by 2′-O-methyl gapmer oligonucleotides

    Get PDF
    Oligonucleotide-based therapeutics have the capacity to engage with nucleic acid immune sensors to activate or block their response, but a detailed understanding of these immunomodulatory effects is currently lacking. We recently showed that 2′-O-methyl (2′OMe) gapmer antisense oligonucleotides (ASOs) exhibited sequence-dependent inhibition of sensing by the RNA sensor Toll-Like Receptor (TLR) 7. Here we discovered that 2′OMe ASOs can also display sequence-dependent inhibitory effects on two major sensors of DNA, namely cyclic GMP-AMP synthase (cGAS) and TLR9. Through a screen of 80 2′OMe ASOs and sequence mutants, we characterized key features within the 20-mer ASOs regulating cGAS and TLR9 inhibition, and identified a highly potent cGAS inhibitor. Importantly, we show that the features of ASOs inhibiting TLR9 differ from those inhibiting cGAS, with only a few sequences inhibiting both pathways. Together with our previous studies, our work reveals a complex pattern of immunomodulation where 95% of the ASOs tested inhibited at least one of TLR7, TLR9 or cGAS by ≥30%, which may confound interpretation of their in vivo functions. Our studies constitute the broadest analysis of the immunomodulatory effect of 2′OMe ASOs on nucleic acid sensing to date and will support refinement of their therapeutic development

    Connexin-dependent transfer of cgamp to phagocytes modulates antiviral responses

    Get PDF
    Activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) plays a critical role in antiviral responses to many DNA viruses. Sensing of cytosolic DNA by cGAS results in synthesis of the endogenous second messenger cGAMP that activates stimulator of interferon genes (STING) in infected cells. Critically, cGAMP can also propagate antiviral responses to uninfected cells through intercellular transfer, although the modalities of this transfer between epithelial and immune cells remain poorly defined. We demonstrate here that cGAMP-producing epithelial cells can transactivate STING in cocultured macrophages through direct cGAMP transfer. cGAMP transfer was reliant upon connexin expression by epithelial cells and pharmacological inhibition of connexins blunted STING-dependent transactivation of the macrophage compartment. Macrophage transactivation by cGAMP contributed to a positive-feedback loop amplifying antiviral responses, significantly protecting uninfected epithelial cells against viral infection. Collectively, our findings constitute the first direct evidence of a connexin-dependent cGAMP transfer to macrophages by epithelial cells, to amplify antiviral responses. IMPORTANCE Recent studies suggest that extracellular cGAMP can be taken up by macrophages to engage STING through several mechanisms. Our work demonstrates that connexin-dependent communication between epithelial cells and macrophages plays a significant role in the amplification of antiviral responses mediated by cGAMP and suggests that pharmacological strategies aimed at modulating connexins may have therapeutic applications to control antiviral responses in humans.Geneviève Pépin, Dominic De Nardo, Christina L. Rootes, Tomalika R. Ullah, Sumaiah S. Al-Asmari, Katherine R. Balka ... et al

    Hormonersatz mittels DHEA plus Glukokortikoide in der Therapie von Patienten mit chronisch entzündlichen Erkrankungen

    Full text link

    Macrophage: A Key Therapeutic Target in Atherosclerosis?

    Full text link

    Human immunodeficiency virus continuum of care in 11 european union countries at the end of 2016 overall and by key population: Have we made progress?

    Get PDF
    Background. High uptake of antiretroviral treatment (ART) is essential to reduce human immunodeficiency virus (HIV) transmission and related mortality; however, gaps in care exist. We aimed to construct the continuum of HIV care (CoC) in 2016 in 11 European Union (EU) countries, overall and by key population and sex. To estimate progress toward the Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 target, we compared 2016 to 2013 estimates for the same countries, representing 73% of the population in the region. Methods. A CoC with the following 4 stages was constructed: number of people living with HIV (PLHIV); proportion of PLHIV diagnosed; proportion of those diagnosed who ever initiated ART; and proportion of those ever treated who achieved viral suppression at their last visit. Results. We estimated that 87% of PLHIV were diagnosed; 92% of those diagnosed had ever initiated ART; and 91% of those ever on ART, or 73% of all PLHIV, were virally suppressed. Corresponding figures for men having sex with men were: 86%, 93%, 93%, 74%; for people who inject drugs: 94%, 88%, 85%, 70%; and for heterosexuals: 86%, 92%, 91%, 72%. The proportion suppressed of all PLHIV ranged from 59% to 86% across countries. Conclusions. The EU is close to the 90-90-90 target and achieved the UNAIDS target of 73% of all PLHIV virally suppressed, significant progress since 2013 when 60% of all PLHIV were virally suppressed. Strengthening of testing programs and treatment support, along with prevention interventions, are needed to achieve HIV epidemic control
    corecore