2 research outputs found

    Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance

    Get PDF
    BACKGROUND: Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The ‘high dose/refuge strategy’, in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. RESULTS: In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. CONCLUSIONS: Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the evolution of resistance

    Potato virus X-mediated constitutive expression of Plutella xylostella PxSDF2L1 gene in Nicotiana benthamiana confers resistance to Phytophthora parasitica var. nicotianae

    Get PDF
    Background The Plutella xylostella PxSDF2L1 gene was previously reported to enhance insect resistance to pathogen at high basal transcription rate. PxSDF2L1 shows similitude with the stromal cell-derived factor 2 (SDF2), an ER stress-induced chaperon protein that is highly conserved throughout animals and plants. The precise biological function of SDF2 is not clear, but its expression is required for innate immunity in plants. Here, we investigate whether a continuous expression of PxSDF2L1 in Nicotiana benthamiana can similarly confer resistance to plant pathogen, particularly, the black shank Phytophthora parasitica var. nicotianae. Results The N. benthamiana plants were inoculated with agrobacteria transformed with a PVX-based binary vector carrying the PxSDF2L1 gene; similar agroinoculation experiments with a PVX vector carrying the GFP gene were used for controls. In pot trials, agroinfected N. benthamiana plants constitutively expressing PxSDF2L1 showed a significant reduction of stem disease symptoms caused by the inoculation with P. parasitica, compared with controls. Conclusions We confirm a role of PxSDF2L1 in resistance to black shank, with a potential application to engineering active resistance against this oomycete in the commercial N. tabacum species and propose its evaluation in other crop families and plant pathogens
    corecore