13,028 research outputs found

    Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin

    Full text link
    Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the star's spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g. superfluid or magnetospheric) or external (e.g. accretion) torques. It is shown that frequency tracking by hidden Markov model (HMM) methods can be combined with existing maximum likelihood coherent matched filters like the F-statistic to surmount some of the challenges raised by spin wandering. Specifically it is found that, for an isolated, biaxial rotor whose spin frequency walks randomly, HMM tracking of the F-statistic output from coherent segments with duration T_drift = 10d over a total observation time of T_obs = 1yr can detect signals with wave strains h0 > 2e-26 at a noise level characteristic of the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). For a biaxial rotor with randomly walking spin in a binary orbit, whose orbital period and semi-major axis are known approximately from electromagnetic observations, HMM tracking of the Bessel-weighted F-statistic output can detect signals with h0 > 8e-26. An efficient, recursive, HMM solver based on the Viterbi algorithm is demonstrated, which requires ~10^3 CPU-hours for a typical, broadband (0.5-kHz) search for the low-mass X-ray binary Scorpius X-1, including generation of the relevant F-statistic input. In a "realistic" observational scenario, Viterbi tracking successfully detects 41 out of 50 synthetic signals without spin wandering in Stage I of the Scorpius X-1 Mock Data Challenge convened by the LIGO Scientific Collaboration down to a wave strain of h0 = 1.1e-25, recovering the frequency with a root-mean-square accuracy of <= 4.3e-3 Hz

    Statistical analysis of general aviation VG-VGH data

    Get PDF
    To represent the loads spectra of general aviation aircraft operating in the Continental United States, VG and VGH data collected since 1963 in eight operational categories were processed and analyzed. Adequacy of data sample and current operational categories, and parameter distributions required for valid data extrapolation were studied along with envelopes of equal probability of exceeding the normal load factor (n sub z) versus airspeed for gust and maneuver loads and the probability of exceeding current design maneuver, gust, and landing impact n sub z limits. The significant findings are included

    The mass and radius of the M dwarf companion to GD 448

    Get PDF
    We present spectroscopy and photometry of GD 448, a detached white dwarf - M dwarf binary with a period of 2.47h. We find that the NaI 8200A feature is composed of narrow emission lines due to irradiation of the M dwarf by the white dwarf within broad absorption lines that are essentially unaffected by heating. Combined with an improved spectroscopic orbit and gravitational red shift measurement from spectra of the H-alpha line, we are able to derive masses for the white dwarf and M dwarf directly (0.41 +/- 0.01 solar masses and 0.096 +/- 0.004 solar masses, respectively). We use a simple model of the CaII emission lines to establish the radius of the M dwarf assuming the emission from its surface to be proportional to the incident flux per unit area from the white dwarf. The radius derived is 0.125 +/- 0.020 solar radii. The M dwarf appears to be a normal main-sequence star in terms of its mass and radius and is less than half the size of its Roche lobe. The thermal timescale of the M dwarf is much longer than the cooling age of the white dwarf so we conclude that the M dwarf was unaffected by the common-envelope phase. The anomalous width of the H-alpha emission from the M dwarf remains to be explained, but the strengh of the line may be due to X-ray heating of the M dwarf due to accretion onto the white dwarf from the M dwarf wind.Comment: 8 pages, 8 figure

    Nonlinear electrophoresis in the presence of dielectric decrement

    Get PDF
    The nonlinear phenomena that occur in the electric double layer (EDL) that forms at charged surfaces strongly influence electrokinetic effects, including electro-osmosis and electrophoresis. In particular, saturation effects due to either dielectric decrement or ion crowding effects are of paramount importance. Dielectric decrement significantly influences the ionic concentration in the EDL at high ζ potential, leading to the formation of a condensed layer near the particle's surface. In this article, we present a model incorporating both steric effects due to the finite size of ions and dielectric decrement to describe the physics in the electric double layer. The model remains valid in both weakly and strongly nonlinear regimes, as long as the electric double layer remains in quasiequilibrium. We apply this model to the study of two archetypal problems in electrokinetics, namely the electrophoresis of particles with fixed surface charges and the electrophoresis of ideally polarizable particles

    Spatio-temporal Bounded Noises, and transitions induced by them in solutions of real Ginzburg-Landau model

    Full text link
    In this work, we introduce two spatio-temporal colored bounded noises, based on the zero-dimensional Cai-Lin and Tsallis-Borland noises. We then study and characterize the dependence of the defined bounded noises on both a temporal correlation parameter τ\tau and on a spatial coupling parameter λ\lambda. The boundedness of these noises has some consequences on their equilibrium distributions. Indeed in some cases varying λ\lambda may induce a transition of the distribution of the noise from bimodality to unimodality. With the aim to study the role played by bounded noises on nonlinear dynamical systems, we investigate the behavior of the real Ginzburg-Landau time-varying model additively perturbed by such noises. The observed phase transitions phenomenology is quite different from the one observed when the perturbations are unbounded. In particular, we observed an inverse "order-to-disorder" transition, and a re-entrant transition, with dependence on the specific type of bounded noise.Comment: 12 (main text)+5 (supplementary) page

    Properties of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas II: The many point particles system

    Full text link
    We study the stationary nonequilibrium states of N point particles moving under the influence of an electric field E among fixed obstacles (discs) in a two dimensional torus. The total kinetic energy of the system is kept constant through a Gaussian thermostat which produces a velocity dependent mean field interaction between the particles. The current and the particle distribution functions are obtained numerically and compared for small E with analytic solutions of a Boltzmann type equation obtained by treating the collisions with the obstacles as random independent scatterings. The agreement is surprisingly good for both small and large N. The latter system in turn agrees with a self consistent one particle evolution expected to hold in the limit of N going to infinity.Comment: 14 pages, 9 figure
    • …
    corecore