430 research outputs found
Morphological characterization of sweet and sour cherry cultivars in a germplasm bank at Portugal
Nine sweet cherry and eight sour cherry varieties located in a germplasm bank at Fundauo, Portugal, were studied from the viewpoint of characterization. Most of them were autochthonous cultivars that have a high risk of extinction since at the present they are markedly minor varieties. Morphological characteristics were evaluated in different organs: crown and trunk of the trees, leaves, flowers and fruits, over a three consecutive years period. Statistical analyses were carried out in order to detect similarities between cultivars as well as the existence of synonymies. Qualitative characteristics of the fruits were scored in order to carry out the multivariate analysis. A dendrogram of the evaluated characters shows the marked differentiation between sour and sweet cherries and suggests the existing synonymies. Conservation of the autochthonous cultivars in the future is highly recommended
Accurate masses and radii of normal stars: modern results and applications
This paper presents and discusses a critical compilation of accurate,
fundamental determinations of stellar masses and radii. We have identified 95
detached binary systems containing 190 stars (94 eclipsing systems, and alpha
Centauri) that satisfy our criterion that the mass and radius of both stars be
known to 3% or better. To these we add interstellar reddening, effective
temperature, metal abundance, rotational velocity and apsidal motion
determinations when available, and we compute a number of other physical
parameters, notably luminosity and distance. We discuss the use of this
information for testing models of stellar evolution. The amount and quality of
the data also allow us to analyse the tidal evolution of the systems in
considerable depth, testing prescriptions of rotational synchronisation and
orbital circularisation in greater detail than possible before. The new data
also enable us to derive empirical calibrations of M and R for single (post-)
main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff),
log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively.
Excellent agreement is found with independent determinations for host stars of
transiting extrasolar planets, and good agreement with determinations of M and
R from stellar models as constrained by trigonometric parallaxes and
spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23
interferometric binaries with masses known to better than 3%, but without
fundamental radius determinations (except alpha Aur). We discuss the prospects
for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and
Astrophysics Review. Ascii versions of the tables will appear in the online
version of the articl
Massively parallel computing on an organic molecular layer
Current computers operate at enormous speeds of ~10^13 bits/s, but their
principle of sequential logic operation has remained unchanged since the 1950s.
Though our brain is much slower on a per-neuron base (~10^3 firings/s), it is
capable of remarkable decision-making based on the collective operations of
millions of neurons at a time in ever-evolving neural circuitry. Here we use
molecular switches to build an assembly where each molecule communicates-like
neurons-with many neighbors simultaneously. The assembly's ability to
reconfigure itself spontaneously for a new problem allows us to realize
conventional computing constructs like logic gates and Voronoi decompositions,
as well as to reproduce two natural phenomena: heat diffusion and the mutation
of normal cells to cancer cells. This is a shift from the current static
computing paradigm of serial bit-processing to a regime in which a large number
of bits are processed in parallel in dynamically changing hardware.Comment: 25 pages, 6 figure
Physical and Electrical Performance of Vapor–Solid Grown ZnO Straight Nanowires
Physical and electrical properties of wurtzitic ZnO straight nanowires grown via a vapor–solid mechanism were investigated. Raman spectrum shows four first-order phonon frequencies and a second-order Raman frequency of the ZnO nanowires. Electrical and photoconductive performance of individual ZnO straight nanowire devices was studied. The results indicate that the nanowires reported here are n-type semi-conductors and UV light sensitive, and a desirable candidate for fabricating UV light nanosensors and other applications
MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases
A low-carbohydrate diet may prevent end-stage renal failure in type 2 diabetes. A case report
An obese patient with type 2 diabetes whose diet was changed from the recommended high-carbohydrate, low-fat type to a low-carbohydrate diet showed a significant reduction in bodyweight, improved glycemic control and a reversal of a six year long decline of renal function. The reversal of the renal function was likely caused by both improved glycemic control and elimination of the patient's obesity. Insulin treatment in type 2 diabetes patients usually leads to weight increase which may cause further injury to the kidney. Although other unknown metabolic mechanisms cannot be excluded, it is likely that the obesity caused by the combination of high-carbohydrate diet and insulin in this case contributed to the patient's deteriorating kidney function. In such patients, where control of bodyweight and hyperglycemia is vital, a trial with a low-carbohydrate diet may be appropriate to avoid the risk of adding obesity-associated renal failure to already failing kidneys
The Zoning of Semi-Enclosed Bodies of Water According to the Sediment Pollution: The Bay of Algeciras as a Case Example
This paper reports a study of the occurrence and
levels of polycyclic aromatic hydrocarbons (PAHs) in a bay
characterised by a chronic persistent impact. A total of 55
sediment samples were taken at different depths up to
111 m in two sampling campaigns. Chemical analyses were
carried out by gas chromatography-mass spectroscopy. The
results indicate that: (1) significant spatial variations exist,
(2) levels of PAHs are related more strongly to the spatial
distribution of sediments than to mineralogy/granulometry,
(3) the sediments are slightly-to-moderately contaminated
by PAHs, and (4) these PAHs derive from pyrolytic and
petrogenic sources. Through use of an innovative data
classification system (proposed according to depth and
spatial location of sampling points), and using factorial and
cluster techniques, five zones have been differentiated
depending on the contamination level and source
- …