1,072 research outputs found
ANFIS to Quantify Maintenance Cost of IT Services in Telecommunication Company
The maintenance cost predication of information technology (IT) regarding their important role and well-time availability in organization is valuable for IT managers. Therefore their decision originated from the predication might be great effect on organizational budgeting, planning, and strategy management. In this regard, having enough knowledge of IT system behavior and their cost forecasting may help IT managers to develop their organization. In this chapter, adaptive neuro-fuzzy inference system (ANFIS) with capability of modeling and predication is introduced, respectively, for quantifying information technology services and their maintenance cost in one of the telecommunication companies in Iran. Because of easy accessibility in finding parameters and also prevention from the complexity of information resulting from some available services in case study organization, automation services are selected by author as kind of user-involved and widely used in finding and studying on the variable data for implementation of the model
Digital Holographic Microscopy of Phase Separation in Multicomponent Lipid Membranes
Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials
- …