6,245 research outputs found
The loss of anisotropy in MgB2 with Sc substitution and its relationship with the critical temperature
The electrical conductivity anisotropy of the sigma-bands is calculated for
the (Mg,Sc)B2 system using a virtual crystal model. Our results reveal that
anisotropy drops with relatively little scandium content (< 30%); this
behaviour coincides with the lowering of Tc and the reduction of the Kohn
anomaly. This anisotropy loss is also found in the Al and C doped systems. In
this work it is argued that the anisotropy, or 2D character, of the sigma-bands
is an important parameter for the understanding of the high Tc found in MgB2
Electronic structure of the ferromagnetic superconductor UCoGe from first principles
The superconductor UCoGe is analyzed with electronic structure calculations
using Linearized Augmented Plane Wave method based on Density Functional
Theory. Ferromagnetic and antiferromagnetic calculations with and without
correlations (via LDA+U) were done. In this compound the Fermi level is
situated in a region where the main contribution to DOS comes from the U-5f
orbital. The magnetic moment is mainly due to the Co-3d orbital with a small
contribution from the U-5f orbital. The possibility of fully non-collinear
magnetism in this compound seems to be ruled out. These results are compared
with the isostructural compound URhGe, in this case the magnetism comes mostly
from the U-5f orbital
Atomic Multiplet and Charge Transfer Effects in the Resonant Inelastic X-Ray Scattering (RIXS) Spectra at the Nickel L2,3 Edge of NiF2
Resonant inelastic x-ray scattering (RIXS) is used to study the electronic structure of NiF2, which is the most ionic of the nickel compounds. RIXS can be viewed as a coherent two-steps process involving the absorption and the emission of x-rays. The soft x-ray absorption spectrum (XAS) at the metal L2,3 edge indicate the importance of atomic multiplet effects. RIXS spectra at L2,3 contain clearly defined emission peaks corresponding to d-excited states of Ni2+ at energies few eV below the elastic emission, which is strongly suppressed. These results are confirmed by atomic multiplet calculations using the Kramers-Heisenberg formula for RIXS processes. For larger energy losses, the emission spectra have a broad charge-transfer peak that results from the decay of hybridized Ni(3d)-F(2p) valence states. This is confirmed by comparison of the absorption and emission spectra recorded at the nickel L and fluorine K edges with F p and Ni d partial density of states using LDA + U calculations
Influence of carbon on intraband scattering in Mg(B1-xCx)2
We report data on the Hall coefficient (RH) of the carbon substituted
Mg(B1-xCx)2 single crystals with x in the range from 0 to 0.1. The temperature
dependences of RH obtained for the substituted crystals differ systematically
at low temperatures, but all of them converge to the value of 1.8 x 10^-10
m^3/C at room temperature. The RH(T) data together with results of the
thermoelectric power and electrical resistivity measurements are interpreted
within a quasi-classical transport approach, where the presence of four
different conducting sheets is considered. The main influence of the carbon
substitution on the transport properties in the normal state is associated with
enhanced scattering rates, rather than modified concentration of charge
carriers. Presumably the carbon substitution increases the electron-impurity
scattering mainly in the pi band.Comment: 16 pages, 3 figure
Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells
The effect of semiconductor passivation on quantum-dot-sensitized solar cells (QDSCs) has been systematically characterized for CdS and CdS/ZnS. We have found that passivation strongly depends on the passivation agent, obtaining an enhancement of the solar cell efficiency for compounds containing amine and thiol groups and, in contrast, a decrease in performance for passivating agents with acid groups. Passivation can induce a change in the position of TiO2 conduction band and also in the recombination rate and nature, reflected in a change in the β parameter. Especially interesting is the finding that β, and consequently the fill factor can be increased with the passivation treatment. Applying this strategy, record cells of 4.65% efficiency for PbS-based QDSCs have been produced.This work was supported by the Institute of Nanotechnologies for Clean Energies (INCE), funded by the Generalitat Valenciana under Project ISIC/2012/008. We thank the following agencies for support of this research: Ministerio de Educacion y Ciencia under project HOPE CSD2007-00007, Generalitat Valenciana (ISIC/2012/008), and Universitat Jaume I project 12I361.01/1. We acknowledge projects CYTED-NanoenergĂa, PAPIIT-IN106912 (UNAM-MĂ©xico), and CONACyT-153270 (MĂ©xico) for financial support. M.S.F. acknowledges the fellowship given by CONACyT-MĂ©xico. Funding from National Research Foundation (NRF) Singapore is also kindly acknowledged (CRP Award No. NRF-CRP4-2008-03)
Efficiency Maximization of a Jet Pump for an Hydraulic Artificial Lift System
In science and engineering, mathematical modeling serves as a tool to understand processes and systems acting as a testing bed for several hypotheses. The selection of a specific model, as well as its variables and parameters, depends on the nature of the system under analysis and the acceptable simplifying assumptions. Therefore, it must allow for a good fit between both the hypothesis and the available data. Opposite to other design approaches based on experimental data or/and complex models, this work presents a simpler numerical design method for efficiency maximization of an Hydraulic Jet Pump (HJP) for oil-well extraction process, considering its hydraulic and geometric parameters. The design process consists in setting and solving a constrained non-linear optimization problem by taking into account the hydraulic model of the HJP in terms four design variables: throat area, nozzle area, injection flow, and injection pressure to the oil-well. The objective function of this case aims to maximize the HJP's efficiency avoiding to approach cavitation condition as well fulfilling technical constraints. A numerical technique, Differential Evolution Algorithm (DEA), has been implemented to solve the optimization problem. The proposed methodology leads to a solution set by considering only commercial geometries and feasible operating conditions for the HJP, which facilitates its practical implementation. A set of ten oil-wells with land production data, operating in the southeaster of Mexico, is used to compare and validate several Jet pump designs, i. e., through comparison with actual oil-well's operation condition.Peer Reviewe
The influence of Ga-irradiation on the transport properties of mesoscopic conducting thin films
We studied the influence of 30keV Ga-ions -- commonly used in focused ion
beam (FIB) devices -- on the transport properties of thin crystalline graphite
flake, LaCaMnO and Co thin films. The changes of the
electrical resistance were measured in-situ during irradiation and also the
temperature and magnetic field dependence before and after irradiation. Our
results show that the transport properties of these materials strongly change
at Ga fluences much below those used for patterning and ion beam induced
deposition (IBID), limiting seriously the use of FIB when the intrinsic
properties of the materials of interest are of importance. We present a method
that can be used to protect the sample as well as to produce selectively
irradiation-induced changes.Comment: 14 pages, 11 figures, will be published in Nanotechnology 201
Perturbations of Noise: The origins of Isothermal Flows
We make a detailed analysis of both phenomenological and analytic background
for the "Brownian recoil principle" hypothesis (Phys. Rev. A 46, (1992), 4634).
A corresponding theory of the isothermal Brownian motion of particle ensembles
(Smoluchowski diffusion process approximation), gives account of the
environmental recoil effects due to locally induced tiny heat flows. By means
of local expectation values we elevate the individually negligible phenomena to
a non-negligible (accumulated) recoil effect on the ensemble average. The main
technical input is a consequent exploitation of the Hamilton-Jacobi equation as
a natural substitute for the local momentum conservation law. Together with the
continuity equation (alternatively, Fokker-Planck), it forms a closed system of
partial differential equations which uniquely determines an associated
Markovian diffusion process. The third Newton law in the mean is utilised to
generate diffusion-type processes which are either anomalous (enhanced), or
generically non-dispersive.Comment: Latex fil
- …