16,148 research outputs found
On Collision Course: The Nature of the Binary Star Cluster NGC 2006 / SL 538
The LMC hosts a rich variety of star clusters seen in close projected
proximity. Ages have been derived for few of them showing differences up to few
million years, hinting at being binary star clusters. However, final
confirmation needs to be done through spectroscopic analysis. Here we focus on
the LMC cluster pair NGC2006-SL538 and aim to determine whether the star
cluster pair is a bound entity (binary star cluster) or a chance alignment.
Using the MIKE echelle spectrograph at LCO we have acquired integrated-light
spectra for each cluster. We have measured radial velocities by two methods: a)
direct line profile measurement yields v km/s for NGC2006 and
km/s for SL538. b) By comparing observed spectra with
synthetic bootstrapped spectra yielding km/s for NGC2006 and
km/s for SL538. Finally when spectra are directly compared,
we find a km/s. Full-spectrum SED fits reveal that the
stellar population ages lie in the range 13-21 Myr with a metallicity of
Z=0.008. We find indications for differences in the chemical abundance patterns
as revealed by the helium absorption lines between the two clusters. The
dynamical analysis shows that the two clusters are likely to merge within the
next 150 Myr. The NGC2006-SL538 cluster pair shows radial velocities,
stellar population and dynamical parameters consistent with a gravitational
bound entity. We conclude that this is a genuine binary cluster pair, and we
propose that their differences in ages and stellar population chemistry is most
likely due to variances in their chemical enrichment history within their
environment. We suggest that their formation may have taken place in a loosely
bound star-formation complex which saw initial fragmentation but then had its
clusters become a gravitationally bound pair by tidal capture.Comment: Accepted for publication in Astronomy & Astrophysics. 15 pages, 10
figures in low resolutio
Energy dependence of the quark masses and mixings
The one loop Renormalization Group Equations for the Yukawa couplings of
quarks are solved. From the solution we find the explicit energy dependence on
of the evolution of the {\em down} quark masses from
the grand unification scale down to the top quark mass . These results
together with the earlier published evolution of the {\em up} quark masses
completes the pattern of the evolution of the quark masses. We also find the
energy dependence of the absolute values of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix . The interesting property of the evolution of the CKM matrix
and the ratios of the quark masses: and is that
they all depend on through only one function of energy .Comment: Talk presented at the IX Mexican School on Particles and Fields,
August 9-19, Metepec, Pue., Mexico. To be published in the AIP Conference
Proceedings. 5 pages and 1 eps figure included in the tex
Remittances, Inequality and Poverty: Evidence from Rural Mexico
Economic research has produced conflicting findings on the distributional impacts of migrant remittances, and there has been little research on the effects of changes in remittances on poverty. This paper utilizes new data from the Mexico National Rural Household Survey, together with inequality and poverty decomposition techniques, to explore the impacts of remittances on rural inequality and poverty. Our findings suggest that remittances from international migrants become more equalizing (or less unequalizing), as well as more effective at reducing poverty, as the prevalence of migration increases.Labor and Human Capital,
Electronic structure of the ferromagnetic superconductor UCoGe from first principles
The superconductor UCoGe is analyzed with electronic structure calculations
using Linearized Augmented Plane Wave method based on Density Functional
Theory. Ferromagnetic and antiferromagnetic calculations with and without
correlations (via LDA+U) were done. In this compound the Fermi level is
situated in a region where the main contribution to DOS comes from the U-5f
orbital. The magnetic moment is mainly due to the Co-3d orbital with a small
contribution from the U-5f orbital. The possibility of fully non-collinear
magnetism in this compound seems to be ruled out. These results are compared
with the isostructural compound URhGe, in this case the magnetism comes mostly
from the U-5f orbital
- …