3,889 research outputs found
Quantum Walk of Two Interacting Bosons
We study the effect of interactions on the bosonic two-particle quantum walk
and its corresponding spatial correlations. The combined effect of interactions
and Hanbury-Brown Twiss interference results in unique spatial correlations
which depend on the strength of the interaction, but not on its sign. The
results are explained in light of the two-particle spectrum and the physics of
attractively and repulsively bound pairs. We experimentally measure the weak
interaction limit of these effects in nonlinear photonic lattices. Finally, we
discuss an experimental approach to observe the strong interaction limit using
single atoms in optical lattices.Comment: 4 pages, 5 figures. Comments wellcom
Optimal Universal Disentangling Machine for Two Qubit Quantum States
We derive the optimal curve satisfied by the reduction factors, in the case
of universal disentangling machine which uses only local operations.
Impossibility of constructing a better disentangling machine, by using
non-local operations, is discussed.Comment: 15 pages, 2 eps figures, 1 section added, 1 eps figure added, minor
corrections, 2 reference numbers correcte
Quantum Key Distribution with Classical Bob
Secure key distribution among two remote parties is impossible when both are
classical, unless some unproven (and arguably unrealistic)
computation-complexity assumptions are made, such as the difficulty of
factorizing large numbers. On the other hand, a secure key distribution is
possible when both parties are quantum.
What is possible when only one party (Alice) is quantum, yet the other (Bob)
has only classical capabilities? We present a protocol with this constraint,
and prove its robustness against attacks: we prove that any attempt of an
adversary to obtain information (and even a tiny amount of information)
necessarily induces some errors that the legitimate users could notice.Comment: 4 and a bit pages, 1 figure, RevTe
Nonlinear Qubit Transformations
We generalise our previous results of universal linear manipulations [Phys.
Rev. A63, 032304 (2001)] to investigate three types of nonlinear qubit
transformations using measurement and quantum based schemes. Firstly, nonlinear
rotations are studied. We rotate different parts of a Bloch sphere in opposite
directions about the z-axis. The second transformation is a map which sends a
qubit to its orthogonal state (which we define as ORTHOG). We consider the case
when the ORTHOG is applied to only a partial area of a Bloch sphere. We also
study nonlinear general transformation, i.e. (theta,phi)->(theta-alpha,phi),
again, applied only to part of the Bloch sphere. In order to achieve these
three operations, we consider different measurement preparations and derive the
optimal average (instead of universal) quantum unitary transformations. We also
introduce a simple method for a qubit measurement and its application to other
cases.Comment: minor corrections. To appear in PR
"Quantumness" versus "classicality" of quantum states and quantum protocols
Entanglement is one of the pillars of quantum mechanics and quantum information processing, and as a result, the quantumness of nonentangled states has typically been overlooked and unrecognized until the last decade. We give a robust definition for the classicality versus quantumness of a single multipartite quantum state, a set of states, and a protocol using quantum states. We show a variety of nonentangled (separable) states that exhibit interesting quantum properties, and we explore the "zoo" of separable states; several interesting subclasses are defined based on the diagonalizing bases of the states, and their nonclassical behavior is investigated.The work of BG was funded by EPSRC and Sidney Sussex College, Cambridge. T.M was funded by the Wolfson Foundation and the Israeli MOD Research and Technology Unit. AB and TM were partly supported The Gerald Schwartz & Heather Reis- man Foundation
Robotic hand augmentation drives changes in neural body representation
Humans have long been fascinated by the opportunities afforded through augmentation. This vision not only depends on technological innovations but also critically relies on our brain's ability to learn, adapt, and interface with augmentation devices. Here, we investigated whether successful motor augmentation with an extra robotic thumb can be achieved and what its implications are on the neural representation and function of the biological hand. Able-bodied participants were trained to use an extra robotic thumb (called the Third Thumb) over 5 days, including both lab-based and unstructured daily use. We challenged participants to complete normally bimanual tasks using only the augmented hand and examined their ability to develop hand-robot interactions. Participants were tested on a variety of behavioral and brain imaging tests, designed to interrogate the augmented hand's representation before and after the training. Training improved Third Thumb motor control, dexterity, and hand-robot coordination, even when cognitive load was increased or when vision was occluded. It also resulted in increased sense of embodiment over the Third Thumb. Consequently, augmentation influenced key aspects of hand representation and motor control. Third Thumb usage weakened natural kinematic synergies of the biological hand. Furthermore, brain decoding revealed a mild collapse of the augmented hand's motor representation after training, even while the Third Thumb was not worn. Together, our findings demonstrate that motor augmentation can be readily achieved, with potential for flexible use, reduced cognitive reliance, and increased sense of embodiment. Yet, augmentation may incur changes to the biological hand representation. Such neurocognitive consequences are crucial for successful implementation of future augmentation technologies
- …