364 research outputs found

    Emotion regulation and internalizing symptoms in children with Autism Spectrum Disorders

    Full text link
    The aim of this study was to examine the unique contribution of two aspects of emotion regulation (awareness and coping) to the development of internalizing problems in 11-year-old high-functioning children with an autism spectrum disorder (HFASD) and a control group, and the moderating effect of group membership on this. The results revealed overlap between the two groups, but also significant differences, suggesting a more fragmented emotion regulation pattern in children with HFASD, especially related to worry and rumination. Moreover, in children with HFASD, symptoms of depression were unrelated to positive mental coping strategies and the conviction that the emotion experience helps in dealing with the problem, suggesting that a positive approach to the problem and its subsequent emotion experience are less effective in the HFASD group

    MEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans

    Get PDF
    The KH domain protein MEX-3 is central to the temporal and spatial control of PAL-1 expression in the C. elegans early embryo. PAL-1 is a Caudal-like homeodomain protein that is required to specify the fate of posterior blastomeres. While pal-1 mRNA is present throughout the oocyte and early embryo, PAL-1 protein is expressed only in posterior blastomeres, starting at the four-cell stage. To better understand how PAL-1 expression is regulated temporally and spatially, we have identified MEX-3 interacting proteins (MIPs) and characterized in detail two that are required for the patterning of PAL-1 expression. RNA interference of MEX-6, a CCCH zinc-finger protein, or SPN-4, an RNA recognition motif protein, causes PAL-1 to be expressed in all four blastomeres starting at the four-cell stage. Genetic analysis of the interactions between these mip genes and the par genes, which provide polarity information in the early embryo, defines convergent genetic pathways that regulate MEX-3 stability and activity to control the spatial pattern of PAL-1 expression. These experiments suggest that par-1 and par-4 affect distinct processes. par-1 is required for many aspects of embryonic polarity, including the restriction of MEX-3 and MEX-6 activity to the anterior blastomeres. We find that PAL-1 is not expressed in par-1 mutants, because MEX-3 and MEX-6 remain active in the posterior blastomeres. The role of par-4 is less well understood. Our analysis suggests that par-4 is required to inactivate MEX-3 at the four-cell stage. Thus, PAL-1 is not expressed in par-4 mutants because MEX-3 remains active in all blastomeres. We propose that MEX-6 and SPN-4 act with MEX-3 to translate the temporal and spatial information provided by the early acting par genes into the asymmetric expression of the cell fate determinant PAL-1

    Nonequilibrium Pair Breaking in Ba(Fe1-xCox)(2)As-2 Superconductors: Evidence for Formation of a Photoinduced Excitonic State

    Get PDF
    Ultrafast terahertz (THz) pump-probe spectroscopy reveals an unusual out-of-equilibrium Cooper pair nonlinear dynamics and a nonequilibrium state driven by femtosecond (fs) photoexcitation of superconductivity (SC) in iron pnictides. Following fast SC quench via hot-phonon scattering, a second, abnormally slow (many hundreds of picoseconds), SC quench regime is observed prior to any recovery. Importantly, a nonlinear pump fluence dependence is identified for this remarkably long prebottleneck dynamics that are sensitive to both doping and temperature. Using quantum kinetic modeling we argue that the buildup of excitonic interpocket correlation between electron-hole ( e − h ) quasiparticles (QP) quenches SC after fs photoexcitation leading to a long-lived, many-QP excitonic state

    Dibromidobis(1-ethyl-2,6-dimethyl­pyridinium-4-olate-κO)zinc(II)

    Get PDF
    In the bioactive title compound, [ZnBr2(C9H13NO)2], the ZnII atom is coordinated in a distorted tetra­hedral arrangement by two Br− anions and the O atoms of two zwitterionic organic ligands. The pyridinium rings are almost planar [maximum deviations = 0.004 (4) and 0.003 (4) Å]. The ethyl groups are approximately perpendicular to the corresponding pyridinium ring planes [N—C—C—C = 88.8 (4)° in each ligand]. The packing of the mol­ecules is controlled by π–π inter­actions, with centroid–centroid distances of 3.625 (3) and 3.711 (2) Å, forming chains approximately parallel to (102). The crystal studied was non-merohedrally twinned (twin relationship between the domains 1 0 0, 0 1 0, −0.4672 −0.1864 −1 and batch scale factor of 7.39%)

    Nuclease Modulates Biofilm Formation in Community-Associated Methicillin-Resistant Staphylococcus aureus

    Get PDF
    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging contributor to biofilm-related infections. We recently reported that strains lacking sigma factor B (sigB) in the USA300 lineage of CA-MRSA are unable to develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus strains, biofilm formation was inhibited. Following fractionation and mass spectrometry analysis, the major anti-biofilm factor identified in the spent media was secreted thermonuclease (Nuc). Considering reports that extracellular DNA (eDNA) is an important component of the biofilm matrix, we investigated the regulation and role of Nuc in USA300. The expression of the nuc gene was increased in a sigB mutant, repressed by glucose supplementation, and was unaffected by the agr quorum-sensing system. A FRET assay for Nuc activity was developed and confirmed the regulatory results. A USA300 nuc mutant was constructed and displayed an enhanced biofilm-forming capacity, and the nuc mutant also accumulated more high molecular weight eDNA than the WT and regulatory mutant strains. Inactivation of nuc in the USA300 sigB mutant background partially repaired the sigB biofilm-negative phenotype, suggesting that nuc expression contributes to the inability of the mutant to form biofilm. To test the generality of the nuc mutant biofilm phenotypes, the mutation was introduced into other S. aureus genetic backgrounds and similar increases in biofilm formation were observed. Finally, using multiple S. aureus strains and regulatory mutants, an inverse correlation between Nuc activity and biofilm formation was demonstrated. Altogether, our findings confirm the important role for eDNA in the S. aureus biofilm matrix and indicates Nuc is a regulator of biofilm formation
    corecore