1,338 research outputs found

    Bayesian quantification for coherent anti-Stokes Raman scattering spectroscopy

    Full text link
    We propose a Bayesian statistical model for analyzing coherent anti-Stokes Raman scattering (CARS) spectra. Our quantitative analysis includes statistical estimation of constituent line-shape parameters, underlying Raman signal, error-corrected CARS spectrum, and the measured CARS spectrum. As such, this work enables extensive uncertainty quantification in the context of CARS spectroscopy. Furthermore, we present an unsupervised method for improving spectral resolution of Raman-like spectra requiring little to no \textit{a priori} information. Finally, the recently-proposed wavelet prism method for correcting the experimental artefacts in CARS is enhanced by using interpolation techniques for wavelets. The method is validated using CARS spectra of adenosine mono-, di-, and triphosphate in water, as well as, equimolar aqueous solutions of D-fructose, D-glucose, and their disaccharide combination sucrose

    Preferences of Deaf College Students for the Hearing Status of Their Children

    Get PDF
    The anticipated results of genetic research and the implications for genetic engineering have the potential to reduce the incidence of conditions such as cancer, but questions have been raised about the ethics of proceeding to conditions such as blindness, deafness or color-blindness. One area that has not been addressed is the preferences of deaf individuals for the hearing status of their children. The present study investigated the preference of deaf college students for the hearing status of children they might have in the future. The results indicated that the majority of respondents expressed no preference for hearing status of children. Of the approximately 25% who did state a preference, all but one would choose to have a deaf child. Implications of this finding are discussed

    Parametrically controlling solitary wave dynamics in modified Kortweg-de Vries equation

    Full text link
    We demonstrate the control of solitary wave dynamics of modified Kortweg-de Vries (MKdV) equation through the temporal variations of the distributed coefficients. This is explicated through exact cnoidal wave and localized soliton solutions of the MKdV equation with variable coefficients. The solitons can be accelerated and their propagation can be manipulated by suitable variations of the above parameters. In sharp contrast with nonlinear Schr\"{o}dinger equation, the soliton amplitude and widths are time independent.Comment: 4 pages, 5 eps figure

    A microtubule RELION-based pipeline for cryo-EM image processing

    Get PDF
    Microtubules are polar filaments built from αβ-tubulin heterodimers that exhibit a range of architectures in vitro and in vivo. Tubulin heterodimers are arranged helically in the microtubule wall but many physiologically relevant architectures exhibit a break in helical symmetry known as the seam. Noisy 2D cryo-electron microscopy projection images of pseudo-helical microtubules therefore depict distinct but highly similar views owing to the high structural similarity of α- and β-tubulin. The determination of the αβ-tubulin register and seam location during image processing is essential for alignment accuracy that enables determination of biologically relevant structures. Here we present a pipeline designed for image processing and high-resolution reconstruction of cryo-electron microscopy microtubule datasets, based in the popular and user-friendly RELION image-processing package, Microtubule RELION-based Pipeline (MiRP). The pipeline uses a combination of supervised classification and prior knowledge about geometric lattice constraints in microtubules to accurately determine microtubule architecture and seam location. The presented method is fast and semi-automated, producing near-atomic resolution reconstructions with test datasets that contain a range of microtubule architectures and binding proteins

    Imaginary Squashing Mode Spectroscopy of Helium Three B

    Full text link
    We have made precision measurements of the frequency of a collective mode of the superfluid 3He-B order parameter, the J=2- imaginary squashing mode. Measurements were performed at multiple pressures using interference of transverse sound in an acoustic cavity. Transverse waves propagate in the vicinity of this order parameter mode owing to off-resonant coupling. At the crossing of the sound mode and the order parameter mode, the sound wave is strongly attenuated. We use both velocity and attenuation measurements to determine precise values of the mode frequency with a resolution between 0.1% and 0.25%.Comment: 6 pages, 4 figures, submitted to proceedings of Quantum Fluids and Solids (QFS) Conference 2006; revised 9/26/0
    • …
    corecore