42,832 research outputs found
The Near-Infrared Extinction Law in Regions of High Av
We present a spectroscopic study of the shape of the dust-extinction law
between 1.0 and 2.2um towards a set of nine ultracompact HII regions with Av >
15 mag. We find some evidence that the reddening curve may tend to flatten at
higher extinctions, but just over half of the sample has extinction consistent
with or close to the average for the interstellar medium. There is no evidence
of extinction curves significantly steeper than the standard law, even where
water ice is present. Comparing the results to the predictions of a simple
extinction model, we suggest that a standard extinction law implies a robust
upper limit to the grain-size distribution at around 0.1 - 0.3um. Flatter
curves are most likely due to changes in this upper limit, although the effects
of flattening due to unresolved clumpy extinction cannot be ruled out.Comment: 9 pages, 7 figure
Atom-Atom Scattering Under Cylindrical Harmonic Confinement: Numerical and Analytical Studies of the Confinement Induced Resonance
In a recent article [M. Olshanii, Phys. Rev. Lett. {\bf 81}, 938 (1998)], an
analytic solution of atom-atom scattering with a delta-function pseudopotential
interaction in the presence of transverse harmonic confinement yielded an
effective coupling constant that diverged at a `confinement induced resonance.'
In the present work, we report numerical results that corroborate this
resonance for more realistic model potentials. In addition, we extend the
previous theoretical discussion to include two-atom bound states in the
presence of transverse confinement, for which we also report numerical results
hereComment: New version with major revisions. We now provide a detailed physical
interpretation of the confinement-induced resonance in tight atomic
waveguide
Helium and Hydrogen Line Ratios and The Stellar Content of Compact HII Regions
We present observations and models of the behaviour of the HI and HeI lines
between 1.6 and 2.2um in a small sample of compact HII regions. As in our
previous papers on planetary nebulae, we find that the `pure' 1.7007um
4^3D-3^3P and 2.16475um 7^(3,1)G-4^(3,1)F HeI recombination lines behave
approximately as expected as the effective temperature of the central exciting
star(s) increases. However, the 2.058um 2^1P-2^1S HeI line does not behave as
the model predicts, or as seen in planetary nebulae. Both models and planetary
nebulae showed a decrease in the HeI 2^1P-2^1S/HI Br gamma ratio above an
effective temperature of 40000K. The compact HII regions do not show any such
decrease. The problem with this line ratio is probably due to the fact that the
photoionisation model does not account correctly for the high densities seen in
these HII regions, and that we are therefore seeing more collisional excitation
of the 2^1P level than the model predicts. It may also reflect some deeper
problem in the assumed model stellar atmospheres. In any event, although the
normal HeI recombination lines can be used to place constraints on the
temperature of the hottest star present, the HeI 2^1P-2^1S/HI Br gamma ratio
should not be used for this purpose in either Galactic HII regions or in
starburst galaxies, and conclusions from previous work using this ratio should
be regarded with extreme caution. We also show that the combination of the near
infrared `pure' recombination line ratios with mid-infrared forbidden line data
provides a good discriminant of the form of the far ultraviolet spectral energy
distribution of the exciting star(s). From this we conclude that CoStar models
are a poor match to the available data for our sources, though the more recent
WM-basic models are a better fit.Comment: Accepted for publication in MNRA
Topologically Driven Swelling of a Polymer Loop
Numerical studies of the average size of trivially knotted polymer loops with
no excluded volume are undertaken. Topology is identified by Alexander and
Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration
radius, and probability density distributions as functions of gyration radius
are generated for loops of up to N=3000 segments. Gyration radii of trivially
knotted loops are found to follow a power law similar to that of self avoiding
walks consistent with earlier theoretical predictions.Comment: 6 pages, 4 figures, submitted to PNAS (USA) in Feb 200
- …