7 research outputs found

    Modeling Quantum Gravity Effects in Inflation

    Full text link
    Cosmological models in 1+1 dimensions are an ideal setting for investigating the quantum structure of inflationary dynamics -- gravity is renormalizable, while there is room for spatial structure not present in the minisuperspace approximation. We use this fortuitous convergence to investigate the mechanism of slow-roll eternal inflation. A variant of 1+1 Liouville gravity coupled to matter is shown to model precisely the scalar sector of cosmological perturbations in 3+1 dimensions. A particular example of quintessence in 1+1d is argued on the one hand to exhibit slow-roll eternal inflation according to standard criteria; on the other hand, a field redefinition relates the model to pure de Sitter gravity coupled to a free scalar matter field with no potential. This and other examples show that the standard logic leading to slow-roll eternal inflation is not invariant under field redefinitions, thus raising concerns regarding its validity. Aspects of the quantization of Liouville gravity as a model of quantum de Sitter space are also discussed.Comment: 43 pages, no figure
    corecore