7 research outputs found

    Effects of Foliar-Applied Mixed Mineral Fertilizers and Organic Biostimulants on the Growth and Hybrid Seed Production of a Male-Sterile Inbred Maize Line

    Get PDF
    Plants of inbred maize lines are characterized by low vigor due to their high rates of homozygosity and may, therefore, benefit from additional nutrients and biostimulants supplied via foliar spraying. The present study innovatively investigated the effects of foliar treatment with three commercial organic-mineral fertilizers/biostimulants on a male-sterile inbred line of maize at the five-leaf stage. The three fertilizers were characterized by their following content: (i) NPK + hydrolyzed animal epithelium + micronutrients (named 'NPK + Hae + micro'), (ii) NK + humified peat (named 'NK + Hp'), and (iii) PK + Ascophyllum nodosum extracts (named 'PK + An'). The resulting shoot and root growth and seed yield and quality were compared to a control (C). Both NPK + Hae + micro and PK + An treatments enhanced root growth in the top 20 cm soil layer at the ten-leaf stage: root dry biomass increased by 80 and 24%, respectively, and the volumetric root length density by 61 and 17%. The two treatments also allowed for a larger number of commercial seeds to be produced (on average +16 bags per gross hectare vs. C) owing to a better seed caliber, which consequently reduced rates of seed disposal (-11 and -20% for PK + An and NPK + Hae + micro, respectively) and, in the case of NPK + Hae + micro, due to an increment in the number of kernels per ear (+5% vs. C). These effects were not associated with any significant changes in shoot growth, height, or leaf net CO2 assimilation. In this preliminary trial, peak commercial benefit was obtained with the use of hydrolyzed epithelium together with macro- and micronutrients. Further investigation into application timing and dose, and the means by which these products alleviate the effects of low vigor and stress conditions observed particularly under mechanical emasculation is, however, necessary for their full exploitation in the production of hybrid maize seeds

    Nitrate Addition Increases the Activity of Microbial Nitrogen Removal in Freshwater Sediment

    No full text
    Denitrification and anammox occur widely in aquatic ecosystems serving vital roles in nitrogen pollution removal. However, small waterbodies are sensitive to external influences; stormwater runoff carrying nutrients and oxygen, flows into waterbodies resulting in a disruption of geochemical and microbial processes. Nonetheless, little is known about how these short-term external inputs affect the microbial processes of nitrogen removal in small waterbodies. To investigate the effects of NO3-, NH4+, dissolved oxygen (DO) and organic C on microbial nitrogen removal in pond sediments, regulation experiments have been conducted using slurry incubation experiments and N-15 tracer techniques in this study. It was demonstrated the addition of NO3- (50 to 800 mu mol L-1) significantly promoted denitrification rates, as expected by Michaelis-Menten kinetics. Ponds with higher NO3- concentrations in the overlying water responded more greatly to NO3- additions. Moreover, N2O production was also promoted by such an addition of NO3-. Denitrification was significantly inhibited by the elevation of DO concentration from 0 to 2 mg L-1, after which no significant increase in inhibition was observed. Denitrification rates increased when organic C was introduced. Due to the abundant NH4+ in pond sediments, the addition demonstrated little influence on nitrogen removal. Moreover, anammox rates showed no significant changes to any amendment

    Temperature-Related N2O Emission and Emission Potential of Freshwater Sediment

    No full text
    Nitrous oxide (N2O) is a major radiative forcing and stratospheric ozone-depleting gas. Among natural sources, freshwater ecosystems are significant contributors to N2O. Although temperature is a key factor determining the N2O emissions, the respective effects of temperature on emitted and dissolved N2O in the water column of freshwater ecosystems remain unclear. In this study, 48 h incubation experiments were performed at three different temperatures; 15 °C, 25 °C, and 35 °C. For each sample, N2O emission, dissolved N2O in the overlying water and denitrification rates were measured, and N2O-related functional genes were quantified at regular intervals. The highest N2O emission was observed at an incubation of 35 °C, which was 1.5 to 2.1 factors higher than samples incubated at 25 °C and 15 °C. However, the highest level of dissolved N2O and estimated exchange flux of N2O were both observed at 25 °C and were both approximately 2 factors higher than those at 35 °C and 15 °C. The denitrification rates increased significantly during the incubation period, and samples at 25 °C and 35 °C exhibited much greater rates than those at 15 °C, which is in agreement with the N2O emission of the three incubation temperatures. The NO3− decreased in relation to the increase of N2O emissions, which confirms the dominant role of denitrification in N2O generation. Indeed, the nirK type denitrifier, which constitutes part of the denitrification process, dominated the nirS type involved in N2O generation, and the nosZ II type N2O reducer was more abundant than the nosZ I type. The results of the current study indicate that higher temperatures (35 °C) result in higher N2O emissions, but incubation at moderate temperatures (25 °C) causes higher levels of dissolved N2O, which represent a potential source of N2O emissions from freshwater ecosystems

    Early morpho-physiological response of oilseed rape under seed applied Sedaxane fungicide and Rhizoctonia solani pressure

    No full text
    The SDHI fungicide Sedaxane has shown to efficiently control Rhizoctonia spp. growth and to possess biostimulant properties in cereal crops. As a first, the present study investigated its effectiveness as a seed treatment of the dicot species oilseed rape (Brassica napus var. oleifera). For this, seeds were treated with different fungicides: (i) the conventionally used active ingredient Thiram, (ii) Sedaxane, or (iii) Sedaxane in combination with Fludioxonil and Metalaxyl-M, and later sown in soil inoculated with Rhizoctonia solani. The resulting shoot and root growth from the treated seeds were recorded in early growth stages and the presence of Rhizoctonia DNA in the basal stem tissue was quantified. Here we demonstrate that all the fungicide treatments were effective in greatly reducing the presence of Rhizoctonia DNA, with Thiram confirming to have high fungicidal effects. Following seed treatment, shoot and root growth at the 2-leaf stage was reduced regardless of inoculation, indicating that the fungicides became phytotoxic, with particular respect to Thiram. In seedlings grown in inoculated soil, significant biostimulation of the roots was observed at the 4-leaf stage of treatments containing both Sedaxane alone and in a mixture. Leaf area was stimulated in control soil not inoculated with Rhizoctonia, likely due to improved PSII efficiency, stomatal conductance, and CO2 assimilation rate. Young oilseed rape seedlings are thus highly sensitive to seed treatments with these fungicides, and in particular to Thiram. The retardation in growth is quickly overcome by the 4-leaf stage however. We confirm that Sedaxane indeed possesses root biostimulant properties in oilseed rape, which are enhanced in combination with other fungicides. Such biostimulating properties impose its greatest effects under conditions of biotic stress

    Succession of soil microbial community in a developing mid-channel bar: The role of environmental disturbance and plant community

    No full text
    Succession of microbial and plant communities is crucial for the development and the stability of soil ecological functions. The relative role of plant communities and environmental disturbance in shaping the microbial community in a newly established habitat remains unclear. In this study, a midchannel bar (MCB) exposed to an environmental disturbance gradient in the Yangtze River was studied to explore the effects of such disturbance and plant community traits on the succession of the soil microbial community. Bulk and rhizospheric soils were collected from the MCB and classified according to their level of exposure to environmental disturbance: head, central and tail. These subsequently underwent high-throughput sequencing and interdomain ecological network (IDEN) analysis to identify and characterize the predominant microbial groups present in the soils at each disturbance level. Furthermore, at each site, the presence and distribution of the plant community was also noted. The present study demonstrated that both bulk soil nutrients and plant community exhibited significant spatial distribution dependent on the level of disturbance and this influenced the composition of the microbial community. In less eroded parts of the MCB, i.e., the central, nutrients accumulated, promoting growths of plants. This in turn encouraged a more diverse microbial community, dominated by the bacterial genus Pseudarthrobacter. Plant showed a stronger association with bulk soil microbial communities compared to rhizosphere soil microbial communities. Particularly, Triarrhena sacchariflora and Hemarthria altissima, present in sites of low disturbance, exhibiting a more extensive plant-microbe association. They thus played a key role in shaping the soil microbial community. In general, however, plant species did not directly determine the composition of the bacterial community, but instead altered the nutritive state of the soil to promote microbial growth. Such findings are of significant value for conservation practices of newly formed ecosystems, which requires an integrated understanding of the role of environmental disturbance and plants on soil microbial community assemblage
    corecore