429 research outputs found

    Methods for decreasing non-point source pollution from poultry manure

    Get PDF
    Poultry production is improved by treating poultry manure in the growing location with alum in an amount of from about 0.75 to about 1.5 tons of alum per 10000 birds raised, or at least 0.15 to about 0.25 pounds of alum per bird raised. This improves weight gain and feed conversion and decreases mortality for birds grown on treated manure as compared with birds grown on untreated manure. The alum-treated manure may also be used as an agricultural fertilizer. When used as agricultural fertilizer in agricultural runoff water studies, plots fertilized with alum-treated manure exhibit decreased concentrations of phosphorus and heavy metals such as arsenic, copper, iron and zinc as compared with plots fertilized with untreated, normal poultry manure

    Swine rearing facility and method for reducing ammonia and odors therein

    Get PDF
    Atmospheric conditions and environmental impact of swine rearing facilities are improved by adding alum (aluminum sulfate) in a swine manure processing system. In an embodiment, alum is added to flush water used to flush away manure which has temporarily collected on at least a portion of a floor of the facility, such as in a flushing trough. The flushed manure and water are drained and delivered to a holding pond. Preferably, the flush water is then recycled from the holding pond for subsequent flushing. In another method, alum is added to a manure slurry in a manure collection pit disposed under a slatted floor on which the swine reside. In either method, alum is added in an amount sufficient to substantially inhibit ammonia volatilization and to decrease soluble phosphorus present to provide a healthy and environmentally safe swine rearing facility and an improved agricultural fertilizer

    Use of alum to inhibit ammonia volatilization and to decrease phosphorus solubility in poultry litter

    Get PDF
    A method for treating poultry litter which inhibits ammonia volatilization and reduces soluble phosphorus levels in the litter. The method comprises the addition of alum to litter in an amount sufficient to maintain the litter pH at values low enough to inhibit ammonia volatilization. The addition of alum, iron or calcium compounds to litter also effectively precipitates soluble phosphorus in litter, thereby reducing the amount of soluble phosphorus runoff from fields receiving litter

    High-rise laying hen rearing facility and method

    Get PDF
    Atmospheric growing conditions in high-rise animal rearing facilities are improved by spraying liquid alum periodically over the manure collection area. This results in improved high rise animal rearing facilities provided with a liquid alum treatment delivery system for misting or spraying the liquid alum over the manure collection area to strip ammonia gas from the air and to apply a chemical coating on a surface of the accumulated manure which reduces or prevents ammonia volatilization. The liquid chemical treatment comprises an aqueous alum solution containing 1 to about 50% by weight alum, applied at a rate of about 50-250 g of Al2(SO4)3 14H2O per kg of manure as it accumulates. The improved rearing facilities and methods control the atmospheric conditions in the animal rearing area at less than or equal to about 25 ppm ammonia throughout the growing cycle

    Use of alum to inhibit ammonia volatilization and to decrease phosphorous solubility in poultry litter

    Get PDF
    A method is described for treating poultry litter which inhibits ammonia volatilization and reduces soluble phosphorus levels in the litter. It comprises the addition of alum to litter in an amount sufficient to maintain the litter pH at values low enough to inhibit ammonia volatilization. The addition of alum, iron or calcium compounds to litter also effectively precipitates soluble phosphorus in litter, thereby reducing the amount of soluble phosphorus runoff from fields receiving litter

    Methods of treating manure

    Get PDF
    A method of treating animal manure solids comprises contacting the solids with a treatment composition comprising AlCl3.nH2O or Al(NO3)3.mH2O, or the residue of AlCl3.nH2O or Al(NO3)3.mH2O, to form a treated waste product, wherein n is from 0 to 10, and m is from 0 to 12. The treatment amount can be effective to reduce phosphorus solubility in the manure; reduce phosphorus runoff and/or phosphorus leaching from fields fertilized with manure; inhibit ammonia volatilization from the manure; flocculate solids in the manure; reduce pathogens in the manure; increase the nitrogen content in the manure; and/or reduce acid rain and PM-10s associated with the manure

    Methods of treating animal waste slurries

    Get PDF
    A method of treating liquid animal manure comprising contacting a manure slurry with a treatment composition comprising a treatment effective amount of AlCl3.nH2O or Al(NO3)3.mH2O, or the residue of AlCl3.nH2O or Al(NO3)3.mH2O, to form a resulting slurry, wherein n is from 0 to 10, and m is from 0 to 12. The treatment effective amount is effective to reduce phosphorus solubility, reduce phosphorus runoff and/or phosphorus leaching from fields fertilized with manure; inhibit ammonia volatilization; flocculate solids; reduce pathogens; increase the nitrogen content; and/or reduce acid rain and PM-10s associated with the manure

    Quality of Runoff from Plots Treated with Municipal Sludge and Horse Bedding

    Get PDF
    Land application of horse stall bedding and municipal sludge can increase runoff concentrations of nutrients, organic matter, and bacteria as well as steroidal hormones such as estrogen. Concentrations of materials in runoff from sites treated with animal manure can be reduced by aluminum sulfate, or alum [Al2(SO4)3•14H2O] treatment. The objectives of this study were to assess plots treated with horse stall bedding or municipal sludge for: (a) runoff quality [concentrations of nitrate nitrogen (NO3-N), ammonia nitrogen (NH3-N), orthophosphate-phosphorus (PO4-P), fecal coliform (FC), chemical oxygen demand (COD) and 17- β estradiol (17 β-E, a form of estrogen)]; (b) changes in runoff quality caused by alum treatment; and (c) time variations in concentrations of the analysis parameters. Horse bedding and municipal sludge were applied to twelve 2.4 × 6.1 m fescue plots (six each for the bedding and sludge). Three of the bedding-treated and three of the sludge-treated plots were also treated with alum. Simulated rainfall (64 mm/h) was applied to the 12 treated plots and to three control (no treatment) plots. The data were analyzed as originating from separate completely randomized, one-way designs with three replications of each treatment. The first design had treatment levels of bedding, bedding and sludge, and control, while the second design had treatment levels of sludge, sludge and alum, and control. The control data were common to both designs. The first 0.5 h runoff was sampled and analyzed for the parameters described above. Analysis parameter concentrations for the waste treated plots were generally lower than those previously reported for runoff after organic treatments. In some cases, concentrations were no different from the controls. Mass losses of all parameters were low and agronomically insignificant. Alum addition decreased runoff PO4-P concentrations and increased NO3-N concentrations but had no effect on concentrations of other parameters. A significant effect of alum addition on 17 β-E and COD concentrations was anticipated on the basis of previous studies; its absence might have been due to inadequate mixing or interval between addition and simulated rainfall. Relationships between concentration and collection time followed two patterns: (a) highest concentrations occurring during the first sample (two minutes following runoff initiation; NO3-N, COD, FC and 17 β-E) and (b) delay in peak concentration until four minutes following runoff initiation (NH3-N and PO4-P). The detection of different general relationships between concentration and time suggests that different mechanisms are dominant in transport of the parameters analyzed

    Vegetative Filter Strip Design for Grassed Areas Treated with Animal Manures

    Get PDF
    Vegetative filter strips (VFS) are a low-cost management option that have been demonstrated to be effective in reducing runoff transport of fertilizer constituents applied to grassed areas (pasture or meadow). Runoff quality studies involving fertilizers applied to grassed areas suggest that VFS can be designed by assuming that (1) only infiltration is responsible for pollutant removal, (2) the first post-application runoff event is most important from a water quality perspective (enabling a design event approach), and (3) no pollutant build-up that degrades VFS performance will occur. The purpose of this study was to develop a VFS design algorithm for grassed areas that uses available information on the water quality dynamics of these systems to simplify the design process to the greatest degree practical. The design algorithm consists of the SCS (1972) Curve Number method for runoff estimation and the Overcash et al. (1981) equation for predicting concentrations of pollutants exiting a VFS as a function of VFS and runoff parameters. The procedure can be used to determine the VFS length required to meet either an allowable pollutant runoff concentration or allowable pollutant mass transport. As an alternative, the process can be used to determine VFS length required to achieve given relative reductions in incoming pollutant runoff concentrations and mass transport. This algorithm can be used quickly and with minimal data to determine the VFS length requirement necessary to provide any desired degree of effectiveness given inputs such as incoming pollutant runoff concentration, background pollutant runoff concentration, soil hydrologic properties, and design storm parameters. Charts are presented that eliminate the need for computations in selected cases

    Poultry Litter-Treated Length Effects on Quality of Runoff from Fescue Plots

    Get PDF
    Using experimental data and/or mathematical simulation models to identify practices that reduce pollution from manure-treated areas is sometimes perceived as limited by the unknown validity of extrapolating plot-scale data to larger areas and by uncertainties in modeling transport of various pollutants. The objectives of this study were to assess the effect of length of manure treatment on runoff concentrations of poultry litter constituents and to define the modes of transport (particulate versus soluble) for nitrogen (N), phosphorus (P), carbon (C), and solids. Poultry litter was applied to three 1.5- x 18.3-m fescue (Festuca arundinacea Schreb.) plots with runoff collection gutters installed at 3.0-m intervals along the lengths of the plots. Runoff was generated from simulated rainfall (50 mm/h for 1 h of runoff), and samples were analyzed for total Kjeldahl N (TKN), organic N (Org-N), ammonia N (NH3-N), nitrate N (NO3-N), total P (TP), total organic C (TOC), and total suspended solids (TSS). Soluble fractions of TKN, Org-N, NH3-N, TP, and TOC were also determined. Manure-treated length had no effect on runoff concentration of any parameter, indicating that a manure-treated length of only 3.0 m would have been sufficient to simulate runoff quality associated with longer manure length treatments. Proportions of TKN, Org-N, NH3-N, and TP transported in soluble form were high (≥ 74%), and over half of the TOC in the runoff was in soluble form. These results indicate that for conditions similar to those of this study, extrapolation with respect to runoff concentrations might be possible with little adaptation of the data and might simplify the design of management practices that key on edge-of-field runoff concentrations. The results with regard to modes of transport can help to better model losses of N, P, and COD and suggest that losses of these parameters will be most effectively controlled through practices that focus on reducing soluble losses rather than simply reducing erosion
    corecore