42,480 research outputs found

    The new radiation-hard optical links for the ATLAS pixel detector

    Full text link
    The ATLAS detector is currently being upgraded with a new layer of pixel based charged particle tracking and a new arrangement of the services for the pixel detector. These upgrades require the replacement of the opto-boards previously used by the pixel detector. In this report we give details on the design and production of the new opto-boards.Comment: Presentation at the DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 201

    Theory of superradiant scattering of laser light from Bose-Einstein condensates

    Full text link
    In a recent MIT experiment, a new form of superradiant Rayleigh scattering was observed in Bose-Einstein condensates. We present a detailed theory of this phenomena in which the directional dependence of the scattering rate and condensate depletion lead to mode competition which is ultimately responsible for superradiance. The nonlinear response of the system is highly sensitive to initial quantum fluctuations which cause large run to run variations in the observed superradiant pulses.Comment: Updated version with new figures,a numerical simulation with realistic experimental parameters is now included. Featured in September 1999 Physics Today, in Search and Discovery sectio

    Optical control and entanglement of atomic Schroedinger fields

    Full text link
    We develop a fully quantized model of a Bose-Einstein condensate driven by a far off-resonant pump laser which interacts with a single mode of an optical ring cavity. In the linear regime, the cavity mode exhibits spontaneous exponential gain correlated with the appearance of two atomic field side-modes. These side-modes and the cavity field are generated in a highly entangled state, characterized by thermal intensity fluctuations in the individual modes, but with two-mode correlation functions which violate certain classical inequalities. By injecting an initial coherent field into the optical cavity one can significantly decrease the intensity fluctuations at the expense of reducing the correlations, thus allowing for optical control over the quantum statistical properties of matter waves.Comment: 4 page

    Electron Impact Ionization Close to the Threshold: Classical Calculations

    Full text link
    In this paper we present Classical Trajectory Monte Carlo (CTMC) calculations for single and multiple electron ionization of Argon atoms and ions in the threshold region. We are able to recover the Wannier exponents a for the power-law behavior of the cross section s versus excess energy: the exact value of the exponent as well as the existence of its saturation for multiple ionization appear to be related to how the total binding energy is shared between target electrons.Comment: 9 pages. To be published in Journal of Physics

    Relative size underlies alternative morph development in a salamander

    Get PDF
    Size thresholds commonly underlie the induction of alternative morphological states. However, the respective importance of absolute and relative size to such thresholds remains uncertain. If absolute size governs expression, morph frequency should differ among environments that influence absolute sizes (e.g. resources, competition), and individuals of the same morph should have similar average sizes across environments. If relative size determines expression, the frequency of each morph may not differ among environments, but morphs within each environment should differ in size relative to one another. We tested these predictions in a salamander (Ambystoma talpoideum) that develops into either a terrestrial metamorph or an aquatic paedomorph. To generate size variation within and among environments, we reared individuals in mesocosm ponds across three conspecific densities. We found that morph frequency did not differ among density treatments, and the morphs were not similarly sized within each density treatment. Instead, within each environment, relatively larger individuals became metamorphs and relatively smaller individuals became paedomorphs. Relative size therefore determined morph development, highlighting the importance of an individual’s social context to size-dependent morph induction

    Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors

    Get PDF
    We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with ≲ 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of σ_E = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for ∼1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering

    Generating entangled atom-photon pairs from Bose-Einstein condensates

    Get PDF
    We propose using spontaneous Raman scattering from an optically driven Bose-Einstein condensate as a source of atom-photon pairs whose internal states are maximally entangled. Generating entanglement between a particle which is easily transmitted (the photon) and one which is easily trapped and coherently manipulated (an ultracold atom) will prove useful for a variety of quantum-information related applications. We analyze the type of entangled states generated by spontaneous Raman scattering and construct a geometry which results in maximum entanglement

    Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors

    Full text link
    One of the defining properties of the conventional three-dimensional ("Z2\mathbb{Z}_2-", or "spin-orbit"-) topological insulator is its characteristic magnetoelectric effect, as described by axion electrodynamics. In this paper, we discuss an analogue of such a magnetoelectric effect in the thermal (or gravitational) and the magnetic dipole responses in all symmetry classes which admit topologically non-trivial insulators or superconductors to exist in three dimensions. In particular, for topological superconductors (or superfluids) with time-reversal symmetry which lack SU(2) spin rotation symmetry (e.g. due to spin-orbit interactions), such as the B phase of 3^3He, the thermal response is the only probe which can detect the non-trivial topological character through transport. We show that, for such topological superconductors, applying a temperature gradient produces a thermal- (or mass-) surface current perpendicular to the thermal gradient. Such charge, thermal, or magnetic dipole responses provide a definition of topological insulators and superconductors beyond the single-particle picture. Moreover we find, for a significant part of the 'ten-fold' list of topological insulators found in previous work in the absence of interactions, that in general dimensions the effective field theory describing the space-time responses is governed by a field theory anomaly. Since anomalies are known to be insensitive to whether the underlying fermions are interacting or not, this shows that the classification of these topological insulators is robust to adiabatic deformations by interparticle interactions in general dimensionality. In particular, this applies to symmetry classes DIII, CI, and AIII in three spatial dimensions, and to symmetry classes D and C in two spatial dimensions.Comment: 16 pages, 2 figure
    corecore