331 research outputs found

    Abundant Trimethylornithine Lipids and Specific Gene Sequences Are Indicative of Planctomycete Importance at the Oxic/Anoxic Interface in <i>Sphagnum</i>-Dominated Northern Wetlands

    Get PDF
    Northern wetlands make up a substantial terrestrial carbon sink and are often dominated by decay-resistant Sphagnum mosses.Recent studies have shown that planctomycetes appear to be involved in degradation of Sphagnum-derived debris. Novel trimethylornithine(TMO) lipids have recently been characterized as abundant lipids in various Sphagnum wetland planctomyceteisolates, but their occurrence in the environment has not yet been confirmed. We applied a combined intact polar lipid (IPL) andmolecular analysis of peat cores collected from two northern wetlands (Saxnäs Mosse [Sweden] and Obukhovskoye [Russia]) inorder to investigate the preferred niche and abundance of TMO-producing planctomycetes. TMOs were present throughout theprofiles of Sphagnum bogs, but their concentration peaked at the oxic/anoxic interface, which coincided with a maximum abundanceof planctomycete-specific 16S rRNA gene sequences. The sequences detected at the oxic/anoxic interface were affiliatedwith the Isosphaera group, while sequences present in the anoxic peat layers were related to an uncultured planctomycete group.Pyrosequencing-based analysis identified Planctomycetes as the major bacterial group at the oxic/anoxic interface at the Obukhovskoyepeat (54% of total 16S rRNA gene sequence reads), followed by Acidobacteria (19% reads), while in the Saxnäs Mossepeat, Acidobacteria were dominant (46%), and Planctomycetes contributed to 6% of the total reads. The detection of abundantTMO lipids in planctomycetes isolated from peat bogs and the lack of TMO production by cultures of acidobacteria suggest thatplanctomycetes are the producers of TMOs in peat bogs. The higher accumulation of TMOs at the oxic/anoxic interface and thechange in the planctomycete community with depth suggest that these IPLs could be synthesized as a response to changing redoxconditions at the oxic/anoxic interface

    Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group

    Full text link
    Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups Uq(g)U_q(g). They have the same FRT generators l±l^\pm but a matrix braided-coproduct \und\Delta L=L\und\tens L where L=l+SlL=l^+Sl^-, and are self-dual. As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the braided matrices BMq(2)BM_q(2); it is a braided-commutative bialgebra in a braided category. As a second application, we show that the quantum double D(\usl) (also known as the `quantum Lorentz group') is the semidirect product as an algebra of two copies of \usl, and also a semidirect product as a coalgebra if we use braid statistics. We find various results of this type for the doubles of general quantum groups and their semi-classical limits as doubles of the Lie algebras of Poisson Lie groups.Comment: 45 pages. Revised (= much expanded introduction

    Algebraic Structures and Eigenstates for Integrable Collective Field Theories

    Full text link
    Conditions for the construction of polynomial eigen--operators for the Hamiltonian of collective string field theories are explored. Such eigen--operators arise for only one monomial potential v(x)=μx2v(x) = \mu x^2 in the collective field theory. They form a ww_{\infty}--algebra isomorphic to the algebra of vertex operators in 2d gravity. Polynomial potentials of orders only strictly larger or smaller than 2 have no non--zero--energy polynomial eigen--operators. This analysis leads us to consider a particular potential v(x)=μx2+g/x2v(x)= \mu x^2 + g/x^2. A Lie algebra of polynomial eigen--operators is then constructed for this potential. It is a symmetric 2--index Lie algebra, also represented as a sub--algebra of U(s(2)).U (s\ell (2)).Comment: 27 page

    Substructures in lens galaxies: PG1115+080 and B1555+375, two fold configurations

    Full text link
    We study the anomalous flux ratio which is observed in some four-image lens systems, where the source lies close to a fold caustic. In this case two of the images are close to the critical curve and their flux ratio should be equal to unity, instead in several cases the observed value differs significantly. The most plausible solution is to invoke the presence of substructures, as for instance predicted by the Cold Dark Matter scenario, located near the two images. In particular, we analyze the two fold lens systems PG1115+080 and B1555+375, for which there are not yet satisfactory models which explain the observed anomalous flux ratios. We add to a smooth lens model, which reproduces well the positions of the images but not the anomalous fluxes, one or two substructures described as singular isothermal spheres. For PG1115+080 we consider a smooth model with the influence of the group of galaxies described by a SIS and a substructure with mass 105M\sim 10^{5} M_{\odot} as well as a smooth model with an external shear and one substructure with mass 108M\sim 10^{8} M_{\odot} . For B1555+375 either a strong external shear or two substructures with mass 107M\sim 10^{7} M_{\odot} reproduce the data quite well.Comment: 26 pages, updated bibliography, Accepted for publication in Astrophysics & Space Scienc

    Large scale numerical investigation of excited states in poly(phenylene)

    Full text link
    A density matrix renormalisation group scheme is developed, allowing for the first time essentially exact numerical solutions for the important excited states of a realistic semi-empirical model for oligo-phenylenes. By monitoring the evolution of the energies with chain length and comparing them to the experimental absorption peaks of oligomers and thin films, we assign the four characteristic absorption peaks of phenyl-based polymers. We also determine the position and nature of the nonlinear optical states in this model.Comment: RevTeX, 10 pages, 4 eps figures included using eps

    The History of Galaxy Formation in Groups: An Observational Perspective

    Get PDF
    We present a pedagogical review on the formation and evolution of galaxies in groups, utilizing observational information from the Local Group to galaxies at z~6. The majority of galaxies in the nearby universe are found in groups, and galaxies at all redshifts up to z~6 tend to cluster on the scale of nearby groups (~1 Mpc). This suggests that the group environment may play a role in the formation of most galaxies. The Local Group, and other nearby groups, display a diversity in star formation and morphological properties that puts limits on how, and when, galaxies in groups formed. Effects that depend on an intragroup medium, such as ram-pressure and strangulation, are likely not major mechanisms driving group galaxy evolution. Simple dynamical friction arguments however show that galaxy mergers should be common, and a dominant process for driving evolution. While mergers between L_* galaxies are observed to be rare at z < 1, they are much more common at earlier times. This is due to the increased density of the universe, and to the fact that high mass galaxies are highly clustered on the scale of groups. We furthermore discus why the local number density environment of galaxies strongly correlates with galaxy properties, and why the group environment may be the preferred method for establishing the relationship between properties of galaxies and their local density.Comment: Invited review, 16 pages, to be published in ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Borissov

    Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System

    Full text link
    A simple model for the dynamics of the Magellanic Stream (MS), in the framework of modified gravity models is investigated. We assume that the galaxy is made up of baryonic matter out of context of dark matter scenario. The model we used here is named Modified Gravity (MOG) proposed by Moffat (2005). In order to examine the compatibility of the overall properties of the MS under the MOG theory, the observational radial velocity profile of the MS is compared with the numerical results using the χ2\chi^2 fit method. In order to obtain the best model parameters, a maximum likelihood analysis is performed. We also compare the results of this model with the Cold Dark Matter (CDM) halo model and the other alternative gravity model that proposed by Bekenstein (2004), so called TeVeS. We show that by selecting the appropriate values for the free parameters, the MOG theory seems to be plausible to explain the dynamics of the MS as well as the CDM and the TeVeS models.Comment: 14 pages, 3 Figures, accepted in Int. J. Theor. Phy

    Theory of excited state absorptions in phenylene-based π\pi-conjugated polymers

    Full text link
    Within a rigid-band correlated electron model for oligomers of poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that there exist two fundamentally different classes of two-photon Ag_g states in these systems to which photoinduced absorption (PA) can occur. At relatively lower energies there occur Ag_g states which are superpositions of one electron - one hole (1e--1h) and two electron -- two hole (2e--2h) excitations, that are both comprised of the highest delocalized valence band and the lowest delocalized conduction band states only. The dominant PA is to one specific member of this class of states (the mAg_g). In addition to the above class of Ag_g states, PA can also occur to a higher energy kAg_g state whose 2e--2h component is {\em different} and has significant contributions from excitations involving both delocalized and localized bands. Our calculated scaled energies of the mAg_g and the kAg_g agree reasonably well to the experimentally observed low and high energy PAs in PPV. The calculated relative intensities of the two PAs are also in qualitative agreement with experiment. In the case of ladder-type PPP and its oligomers, we predict from our theoretical work a new intense PA at an energy considerably lower than the region where PA have been observed currently. Based on earlier work that showed that efficient charge--carrier generation occurs upon excitation to odd--parity states that involve both delocalized and localized bands, we speculate that it is the characteristic electronic nature of the kAg_g that leads to charge generation subsequent to excitation to this state, as found experimentally.Comment: Revtex4 style, 2 figures inserted in the text, three tables, 10 page
    corecore