19 research outputs found

    Demographics of extra-articular calcaneal fractures: Including a review of the literature on treatment and outcome

    Get PDF
    Introduction: Extra-articular calcaneal fractures represent 25-40% of all calcaneal fractures and an even higher percentage of up to 60% is seen in children. A disproportionately small part of the literature on calcaneal fractures involves the extra-articular type. The aim of this study was to investigate the incidence of extra-articular calcaneal fractures in a Level 1 trauma centre, define the distribution of the various types of fractures and compare patient demographics between extra- and intra-articular calcaneal fractures. In addition the literature was reviewed for the most common types of extra-articular calcaneal fractures with regard to incidence, treatment and clinical outcome. Methods: The radiological records between 2003 and 2005 were reviewed for intra- and extra-articular calcaneal fractures. Patient gender-distribution and age were compared. A literature search was conducted for the treatment of extra-articular calcaneal fractures. Results: In this 3-year study period a total of 49 patients with 50 extra-articular calcaneal fractures and 91 patients with 101 intra-articular fractures were identified. The median age for the first group was 32.7 years, and for the second group 40.3 years; P = 0.04. Male predominance was significantly less pronounced for extra-articular (63%) compared with intra-articular fractures (79%; P = 0.04). Conclusion: One-third of all calcaneal fractures are extra-articular. Significant differences exist between the intra- and extra-articular groups, in terms of lower age and male-female ratio. The literature study shows inconsistencies in treatment options, but most extra-articular fractures are well manageable conservatively

    Computerized Navigation for Treatment of Slipped Femoral Capital Epiphysis

    No full text
    In situ pinning with a single screw is the treatment of choice for symptomatic slipped capital femoral epiphysis (SCFE). Some technical features are critical and include proper screw entry point, screw direction in relation to the epiphysis, and the length of screw. These are complicated by the deformity created as a result of the posterior slip of the epiphysis. Fluoroscopic based computerized navigation system can increase precision in screw placement while performing the surgical task, and markedly reduce radiation. By using real fluoroscopy-based navigation, the screw can be placed with only two fluoroscopic images. Entry point, length, and precise direction can all be easily determined through this technique
    corecore