11 research outputs found

    Assessing and optimizing biofilter performance in drinking water treatment

    Get PDF
    Biological filtration is a widely used treatment barrier in drinking water treatment plants to ensure the biological stability of treated water in distribution systems. Biofilters remove particulate and dissolved organic matter (DOM) and biodegradable organic matter from water. However, biofilters are difficult to study at full-scale where they are influenced by many factors that vary over time. Furthermore, there are multiple DOM removal processes occur simultaneously within BAC filter biofilms including adsorption, desorption and biodegradation. This research examined how optical properties of DOM (e.g. fluorescence spectroscopy and absorbance) can be used as an advanced characterization method to provide novel insights into performance and fundamental mechanisms of drinking water treatment via biological filtration processes.A full-scale study involving experimental manipulation of parallel biofilters with non-adsorptive media allowed the study of DOM removal as a function of empty bed contact time (EBCT). By continuously monitoring effluent turbidity from the filters and measuring DOM removal via fluorescence spectroscopy, it was shown that turbidity and protein-like DOM removal increased linearly with increasing EBCT up until at least 80 min EBCT. Removal of refractory humic-like DOM removal improved, although to a smaller extent. This was contrary to the prevailing view that there is a negligible improvement in DOM removal efficiency at contact times longer than 30 min. Striking a good balance between DOM removal by biofiltration and the cost of longer EBCT can in turn result reduced operational costs while improving finished water quality.This research was also carried out to distinguish biotic (biological degradation) and abiotic (adsorption and desorption) processes occurring within biofilter media. To distinguish these requires a suitable abiotic control, i.e. filter media with the same chemical properties but no biology. To identify abiotic controls for BAC filter experiments, a batch-scale study was conducted using gamma irradiation as a sterilization method. However, by measuring DOM removal via fluorescence spectroscopy, it was possible to observe that the chemical properties of biofilter materials changed even at low gamma doses (2.5 kGy) and a dose-related release of protein-like fluorophores occurred, possibly from the biofilm. The gamma-irradiation method was therefore deemed to be unsuitable for producing abiotic controls for BAC studies.In a further attempt to identify abiotic controls for BAC filter experiments, the temperature was utilized as an alternative control strategy. Depending on responses to temperature in batch experiments, it was deduced whether DOM removal predominantly occurred via adsorption (chemisorption/physisorption) or biological degradation. Under the particular experimental conditions, there was little evidence of biological removal; instead, removal of DOM fractions emitting at longer wavelengths (“humic-like”, >430 nm) was consistent with chemisorption,viremoval of DOM emitting at intermediate wavelengths (“humic-like”, 390-420 nm) was consistent with physisorption, and multiple mechanisms were indicated for “protein-like” (<380 nm) DOM. Abiotic mechanisms like adsorption are often assumed to be unimportant for aged BAC filters; however, these results suggest that abiotic processes may be important for some DOM fractions.Ultimately, this research aims to inform the design and operation of full-scale biological filters under Nordic climate conditions. To that end, a simple and cost-effective operational strategy was investigated for improving short-term DOM removal in full-scale biological filters. The strategy involved replacing a small fraction of saturated filter media with new media. Relative to replacing the entire media, this approach required lower capital cost and shorter downtime and maintained conditions for biological filter functioning. The modified biological filters showed improved DOM removal lasting for several weeks.The results of this thesis demonstrate that fluorescence spectroscopy, due to high analytical precision and sensitivity, is a sensitive method for tracking DOM removal via biological filters. Additionally, it suggests there are opportunities to improve drinking water treatment by promoting one or other of the removal mechanisms depending on the incoming water quality. For example, allowing longer contact time in summer when there is elevated biodegradable DOM removal or performing partial renewal of biofilter media after heavy rains when incoming water has relatively high organic pollutants. Overall, these results are relevant to water producers that aim to optimize biofilters performance under strained operating conditions

    Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters

    Get PDF
    Landfill leachates are repeatedly found contaminated with organic pollutants, such as alkylphenols (APs), phthalates and polycyclic aromatic hydrocarbons (PAHs) at levels exceeding water quality standards. It has been shown that these pollutants may be present in the colloidal and truly dissolved phase in contaminated water, making particle separation an inefficient removal method. The aim of this study was to investigate sorption and degradation of petroleum hydrocarbons (PHCs), selected APs, bisphenol A (BPA), phthalates and PAHs from landfill leachate using sand, granulated activated carbon (GAC) and peat moss filters. A pilot plant was installed at an inactive landfill with mixed industrial and household waste and samples were collected before and after each filter during two years. Leachate pre-treated in oil separator and sedimentation pond failed to meet water quality standards in most samples and little improvement was seen after the sand filter. These techniques are based on particle removal, whereas the analysed pollutants are found, to varying degrees, bound to colloids or dissolved. However, even highly hydrophobic compounds expected to be particle-bound, such as the PHCs and high-molecular weight PAHs, were poorly removed in the sand filter. The APs and BPA were completely removed by the GAC filter, while mass balance calculations indicate that 50–80% of the investigated phenols were removed in the peat filter. Results suggest possible AP degradation in peat filters. No evidence of phthalate degradation in the landfill, pond or the filters was found. The PHCs were completely removed in 50% and 35% of the measured occasions in the GAC and peat filters, respectively. The opposite trend was seen for removal of PAHs in GAC (50%) and peat (63%). Oxygenated PAHs with high toxicity were found in the leachates but not in the pond sediment. These compounds are likely formed in the pond water, which is alarming because sedimentation ponds are commonly used treatment techniques. The oxy-PAHs were effectively removed in the GAC, and especially the peat filter. It was hypothesized that dissolved compounds would adsorb equally well to the peat and GAC filters. This was not completely supported as the GAC filter was in general more efficient than peat

    Full-Scale Manipulation of the Empty Bed Contact Time to Optimize Dissolved Organic Matter Removal by Drinking Water Biofilters

    Get PDF
    A study was conducted at a water treatment plant to optimize parallel rapid gravity biofilters for dissolved organic matter (DOM) removal. The biofilters treat urban and agriculturally impacted river water using a commercial non-adsorptive, expanded-clay filter medium. The study aimed to locate the optimal operating conditions via experimental manipulation of the biofilter empty bed contact time (EBCT) during full-scale operation at the plant. During a two-month experiment, contact times in four parallel biofilters were switched to and maintained at 15, 30, 50, and 80 min by manipulating the hydraulic loading on each filter. The removal efficiency of organic matter fractions increased with EBCT for dissolved organic carbon (DOC) and microbial humic-like (F290/420) and protein-like (F280/340) fluorescent organic matter. Other DOM fractions were largely unaffected by biofiltration, or at slightly higher concentrations in the effluent. Protein-like fluorescence is associated with labile organic matter fractions, which are known to be removed poorly by drinking water treatment barriers apart from biological filters. The results suggest that long contact times (>30 min) have advantages for the operation of some biological filters, especially if placed ahead of barriers that are sensitive to biofouling, e.g., membranes

    Temperature-dependent mechanisms of DOM removal by biological activated carbon filters

    Get PDF
    Seasonal variability in the removal of dissolved organic matter (DOM) by drinking water biological activated carbon (BAC) filters is often attributed to temperature changes. However, it can be rather difficult to directly relate temperature to treatment efficiency at full scale due to seasonal variations in other influential parameters like DOM concentration and character, and microbial activity. Furthermore, processes in BAC filters include adsorption, desorption and biodegradation within biofilms while each respond differently to temperature. This study aimed to decouple these processes by studying the removal of various DOM fractions from coagulated and settled drinking water when in contact with aged (>3 years) BAC filter material at different water temperatures. DOM removal was measured as changes in dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV254) and fluorescence. Under the particular experimental conditions there was little evidence of biological removal; instead, removal of DOM fractions emitting at longer wavelengths ("humic-like", >430 nm) was consistent with chemisorption, removal of DOM emitting at intermediate wavelengths ("humic-like", 390-420 nm) was consistent with physisorption, and multiple mechanisms were indicated for "protein-like" (<380 nm) DOM. Non-biological mechanisms of DOM removal by aged BAC filters are often assumed to be unimportant; however, these results suggest they are important for some DOM fractions, especially during periods of reduced microbial activity

    Partial renewal of granular activated carbon filters for improved drinking water treatment

    Get PDF
    Drinking water is widely collected from surface water sources. In these water sources, both the quantity and quality of natural organic matter (NOM) have been affected around the world during the last decades, especially in Northern Europe and North America. This increasing NOM and its composition change challenge the drinking water treatment plants (DWTPs) due to e.g. increased coagulant demand, and because NOMs constituents act as precursors for potentially harmful disinfection by-products. Many DWTPs employing conventional treatment are currently struggling to maintain sufficient NOM removal, and are facing significant investments to upgrade existing treatment processes. In this thesis, a modification strategy to improve NOM removal by existing biological activated carbon (BAC) filters was tested. Analytical techniques like dissolved organic carbon, spectroscopic methods (absorbance and fluorescence) were used to monitor the performance of the modified filters in comparison to reference filters. In the second phase of the study, the modification strategy was employed in a different DWTP with different source water and coagulation treatment in order to validate the effectiveness of the proposed strategy under diverse conditions. Results show that replenishment of about 10% activated carbon media with new carbon media in BAC filters resulted in improved performance. The modified biofilters showed improved organic matter removal lasting for 10-20 days, depending on surface loading. In addition to improving the adsorption of humic-like NOM fractions, biological removal by the saturated filter media was enhanced. A subsequent validation study showed that improvement of biodegradation and adsorption mechanisms occurred in different DWTPs regardless of differences in NOM composition and coagulation processes prior to the BAC filters

    Partial renewal of granular activated carbon filters for improved drinking water treatment

    No full text
    There is a trend of increasing natural organic matter (NOM) in raw drinking waters of Nordic countries due to climate change. Seasonal deterioration in NOM quality imparts challenges for delivering a consistently high drinking water quality. In this study, a simple and cost-effective operational strategy was investigated that improved short-term NOM removal in a full-scale treatment plant. Three granular activated carbon (GAC) media biofilters were modified by replacing a small fraction of saturated filter media with new media. Relative to replacing the entire biofilter media, this approach required lower capital cost and shorter downtime and maintained conditions for biological filter functioning. NOM removal efficiencies were compared in modified versus unmodified (reference) filters using online UV absorbance, and offline fluorescence and dissolved organic carbon measurements. The modified biofilters showed improved organic matter removal lasting for at least four weeks. Partial replenishment of GAC in full-scale biofilters may be a useful and sustainable operational strategy for coping with temporarily high NOM loads in raw waters that might otherwise cause water quality problems

    Partial replenishment of biological activated carbon filters to improve natural organic matter removal.

    No full text
    Natural organic matter (NOM) in surface waters negatively impacts drinking watertreatment and is a precursor of harmful disinfection by-products (DBPs). Granular activate carbon(GAC) filters are integral components of many drinking water treatment plants (WTPs) due to theability to remove NOM and organic micro pollutants from raw waters. However, GAC filters loseadsorption capacity and convert to biologically activated carbon (BAC) filter relatively quickly. Thispaper reports on a full-scale BAC filter modification strategy to enhance short-term NOM removal.This is achieved by adding a small amount of fresh GAC to BAC filters which increases adsorptionwhile maintaining biological degradation of organics by the microbes attached to the BAC. Thisstrategy was implemented at two treatment plants in Sweden. Modified filters showed better removal ofhumic-like and protein-like NOM fractions than reference filters that did not receive fresh GAC,indicating improved functioning of both adsorption and biological treatment. The result shows thatboth biodegradation and adsorption mechanism improved within the filters
    corecore