17,752 research outputs found
Theory of Microwave Parametric Down Conversion and Squeezing Using Circuit QED
We study theoretically the parametric down conversion and squeezing of
microwaves using cavity quantum electrodynamics of a superconducting Cooper
pair box (CPB) qubit located inside a transmission line resonator. The
non-linear susceptibility \chi_2 describing three-wave mixing can be tuned by
dc gate voltage applied to the CPB and vanishes by symmetry at the charge
degeneracy point. We show that the coherent coupling of different cavity modes
through the qubit can generate a squeezed state. Based on parameters realized
in recent successful circuit QED experiments, squeezing of 95% ~ 13dB below the
vacuum noise level should be readily achievable.Comment: 4 pages, accepted for publication in Phys. Rev. Let
Sub-monolayer nucleation and growth of complex oxide heterostructures at high supersaturation and rapid flux modulation
We report on the non-trivial nanoscale kinetics of the deposition of novel
complex oxide heterostructures composed of a unit-cell thick correlated metal
LaNiO3 and dielectric LaAlO3. The multilayers demonstrate exceptionally good
crystallinity and surface morphology maintained over the large number of
layers, as confirmed by AFM, RHEED, and synchrotron X-ray diffraction. To
elucidate the physics behind the growth, the temperature of the substrate and
the deposition rate were varied over a wide range and the results were treated
in the framework of a two-layer model. These results are of fundamental
importance for synthesis of new phases of complex oxide heterostructures.Comment: 13 pages, 6 figure
Reentrant Melting of Soliton Lattice Phase in Bilayer Quantum Hall System
At large parallel magnetic field , the ground state of bilayer
quantum Hall system forms uniform soliton lattice phase. The soliton lattice
will melt due to the proliferation of unbound dislocations at certain finite
temperature leading to the Kosterlitz-Thouless (KT) melting. We calculate the
KT phase boundary by numerically solving the newly developed set of Bethe
ansatz equations, which fully take into account the thermal fluctuations of
soliton walls. We predict that within certain ranges of , the
soliton lattice will melt at . Interestingly enough, as temperature
decreases, it melts at certain temperature lower than exhibiting
the reentrant behaviour of the soliton liquid phase.Comment: 11 pages, 2 figure
Comparative assessment of young learners' foreign language competence in three Eastern European countries
This paper concerns teacher practices in, and beliefs about, the assessment of young learners' progress in English in three Eastern European countries (Slovenia, Croatia, and the Czech Republic). The central part of the paper focuses on an international project involving empirical research into assessment of young learners' foreign language competence in Slovenia, Croatia and the Czech Republic. With the help of an adapted questionnaire, we collected data from a non-random sample of primary and foreign language teachers who teach foreign languages at the primary level in these countries. The research shows that English as a foreign language is taught mostly by young teachers either primary specialists or foreign language teachers. These teachers most frequently use oral assessment/interviews or self-developed tests. Other more authentic types of assessment, such as language portfolios, are rarely used. The teachers most frequently assess speaking and listening skills, and they use assessment involving vocabulary the most frequently of all. However, there are significant differences in practice among the three countries
Observation of Scarred Modes in Asymmetrically Deformed Microcylinder Lasers
We report observation of lasing in the scarred modes in an asymmetrically
deformed microcavity made of liquid jet. The observed scarred modes correspond
to morphology-dependent resonance of radial mode order 3 with their Q values in
the range of 10^6. Emission directionality is also observed, corresponding to a
hexagonal unstable periodic orbit.Comment: 4 pages, 6 figure
Improved TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems
Scintillation light produced in liquid argon (LAr) must be shifted from 128
nm to visible wavelengths in light detection systems used for liquid argon
time-projection chambers (LArTPCs). To date, LArTPC light collection systems
have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes
(PMTs) or plates placed in front of the PMTs. Recently, a new approach using
TPB-coated light guides was proposed. In this paper, we report on light guides
with improved attenuation lengths above 100 cm when measured in air. This is an
important step in the development of meter-scale light guides for future
LArTPCs. Improvements come from using a new acrylic-based coating,
diamond-polished cast UV transmitting acrylic bars, and a hand-dipping
technique to coat the bars. We discuss a model for connecting bar response in
air to response in liquid argon and compare this to data taken in liquid argon.
The good agreement between the prediction of the model and the measured
response in liquid argon demonstrates that characterization in air is
sufficient for quality control of bar production. This model can be used in
simulations of light guides for future experiments.Comment: 25 pages, 20 figure
Bag Formation in Quantum Hall Ferromagnets
Charged skyrmions or spin-textures in the quantum Hall ferromagnet at filling
factor nu=1 are reinvestigated using the Hartree-Fock method in the lowest
Landau level approximation. It is shown that the single Slater determinant with
the minimum energy in the unit charge sector is always of the hedgehog form. It
is observed that the magnetization vector's length deviates locally from unity,
i.e. a bag is formed which accommodates the excess charge. In terms of a
gradient expansion for extended spin-textures a novel O(3) type of effective
action is presented, which takes bag formation into account.Comment: 13 pages, 3 figure
Strong Correlation to Weak Correlation Phase Transition in Bilayer Quantum Hall Systems
At small layer separations, the ground state of a nu=1 bilayer quantum Hall
system exhibits spontaneous interlayer phase coherence and has a
charged-excitation gap E_g. The evolution of this state with increasing layer
separation d has been a matter of controversy. In this letter we report on
small system exact diagonalization calculations which suggest that a single
phase transition, likely of first order, separates coherent incompressible (E_g
>0) states with strong interlayer correlations from incoherent compressible
states with weak interlayer correlations. We find a dependence of the phase
boundary on d and interlayer tunneling amplitude that is in very good agreement
with recent experiments.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. Let
Recursive solutions for Laplacian spectra and eigenvectors of a class of growing treelike networks
The complete knowledge of Laplacian eigenvalues and eigenvectors of complex
networks plays an outstanding role in understanding various dynamical processes
running on them; however, determining analytically Laplacian eigenvalues and
eigenvectors is a theoretical challenge. In this paper, we study the Laplacian
spectra and their corresponding eigenvectors of a class of deterministically
growing treelike networks. The two interesting quantities are determined
through the recurrence relations derived from the structure of the networks.
Beginning from the rigorous relations one can obtain the complete eigenvalues
and eigenvectors for the networks of arbitrary size. The analytical method
opens the way to analytically compute the eigenvalues and eigenvectors of some
other deterministic networks, making it possible to accurately calculate their
spectral characteristics.Comment: Definitive version accepted for publication in Physical Reivew
Ultrasound attenuation and a P-B-T phase diagram of superfluid 3He in 98% aerogel
Longitudinal sound attenuation measurements in superfluid 3He in 98% aerogel
were conducted at pressures between 14 and 33 bar and in magnetic fields up to
4.44 kG. The temperature dependence of the ultrasound attenuation in the A-like
phase was determined for the entire superfluid region exploiting the field
induced meta-stable A-like phase at the highest field. In the lower field, the
A-B transition in aerogel was identified by a smooth jump in attenuation on
both cooling and warming. Based on the transitions observed on warming, a phase
diagram as a function of pressure (P), temperature (T) and magnetic field (B)
is constructed. We find that the A-B phase boundary in aerogel recedes in a
drastically different manner than in bulk in response to an increasing magnetic
field. The implications of the observed phase diagram are discussed.Comment: 9 pages, 13 figures, accepted to PR
- …