2,345 research outputs found

    Pointing-and-Acquisition for Optical Wireless in 6G: From Algorithms to Performance Evaluation

    Get PDF
    The increasing demand for wireless communication services has led to the development of non-terrestrial networks, which enables various air and space applications. Free-space optical (FSO) communication is considered one of the essential technologies capable of connecting terrestrial and non-terrestrial layers. In this article, we analyze considerations and challenges for FSO communications between gateways and aircraft from a pointing-and-acquisition perspective. Based on the analysis, we first develop a baseline method that utilizes conventional devices and mechanisms. Furthermore, we propose an algorithm that combines angle of arrival (AoA) estimation through supplementary radio frequency (RF) links and beam tracking using retroreflectors. Through extensive simulations, we demonstrate that the proposed method offers superior performance in terms of link acquisition and maintenance

    Quantum Holographic Encoding in a Two-dimensional Electron Gas

    Full text link
    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures--"molecular holograms"--which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as ~0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm2 and place tens of bits into a single fermionic state.Comment: Published online 25 January 2009 in Nature Nanotechnology; 12 page manuscript (including 4 figures) + 2 page supplement (including 1 figure); supplementary movie available at http://mota.stanford.ed

    Prognostic significance of endogenous adhesion/growth-regulatory lectins in lung cancer

    Get PDF
    Objective: To determine the expression of endogenous adhesion/growth-regulatory lectins and their binding sites using labeled tissue lectins as well as the binding profile of hyaluronic acid as an approach to define new prognostic markers. Methods: Sections of paraffin-embedded histological material of 481 lungs from lung tumor patients following radical lung excision processed by a routine immunohistochemical method (avidin-biotin labeling, DAB chromogen). Specific antibodies against galectins-1 and - 3 and the heparin-binding lectin were tested. Staining by labeled galectins and hyaluronic acid was similarly visualized by a routine protocol. After semiquantitative assessment of staining, the results were compared with the pT and pN stages and the histological type. Survival was calculated by univariate and multivariate methods. Results: Binding of galectin-1 and its expression tended to increase, whereas the parameters for galectin-3 decreased in advanced pT and pN stages at a statistically significant level. The number of positive cases was considerably smaller among the cases with small cell lung cancer than in the group with non-small-cell lung cancer, among which adenocarcinomas figured prominently with the exception of galectin-1 expression. Kaplan-Meier computations revealed that the survival rate of patients with galectin-3-binding or galectin-1-expressing tumors was significantly poorer than that of the negative cases. In the multivariate calculations of survival lymph node metastases ( p < 0.0001), histological type ( p = 0.003), galectin-3-binding capacity ( p = 0.01), galectin-3 expression ( p = 0.03) and pT status ( p = 0.003) proved to be independent prognostic factors, not correlated with the pN stage. Conclusion: The expression and the capacity to bind the adhesion/growth regulatory galectin-3 is defined as an unfavorable prognostic factor not correlated with the pTN stage. Copyright (C) 2005 S. Karger AG, Basel

    Carbon monoxide production from five volatile anesthetics in dry sodalime in a patient model: halothane and sevoflurane do produce carbon monoxide; temperature is a poor predictor of carbon monoxide production

    Get PDF
    BACKGROUND: Desflurane and enflurane have been reported to produce substantial amounts of carbon monoxide (CO) in desiccated sodalime. Isoflurane is said to produce less CO and sevoflurane and halothane should produce no CO at all. The purpose of this study is to measure the maximum amounts of CO production for all modern volatile anesthetics, with completely dry sodalime. We also tried to establish a relationship between CO production and temperature increase inside the sodalime. METHODS: A patient model was simulated using a circle anesthesia system connected to an artificial lung. Completely desiccated sodalime (950 grams) was used in this system. A low flow anesthesia (500 ml/min) was maintained using nitrous oxide with desflurane, enflurane, isoflurane, halothane or sevoflurane. For immediate quantification of CO production a portable gas chromatograph was used. Temperature was measured within the sodalime container. RESULTS: Peak concentrations of CO were very high with desflurane and enflurane (14262 and 10654 ppm respectively). It was lower with isoflurane (2512 ppm). We also measured small concentrations of CO for sevoflurane and halothane. No significant temperature increases were detected with high CO productions. CONCLUSION: All modern volatile anesthetics produce CO in desiccated sodalime. Sodalime temperature increase is a poor predictor of CO production

    AROS Is a Significant Biomarker for Tumor Aggressiveness in Non-cirrhotic Hepatocellular Carcinoma

    Get PDF
    Despite a low risk of liver failure and preserved liver function, non-cirrhotic hepatocellular carcinoma (HCC) has a poor prognosis. In the current study, we evaluated an active regulator of SIRT1 (AROS) as a prognostic biomarker in non-cirrhotic HCC. mRNA levels of AROS were measured in tumor and non-tumor tissues obtained from 283 non-cirrhotic HCC patients. AROS expression was exclusively up-regulated in recurrent tissues from the non-cirrhotic HCC patients (P = 0.015) and also in tumor tissues irrespective of tumor stage (P < 0.001) or BCLC stage (P < 0.001). High mRNA levels of AROS were statistically significantly associated with tumor stage (P < 0.001), BCLC stage (P = 0.007), alpha fetoprotein (AFP) level (P = 0.013), microvascular invasion (P = 0.001), tumor size (P = 0.036), and portal vein invasion (P = 0.005). Kaplan-Meir curve analysis demonstrated that HCC patients with higher AROS levels had shorter disease-free survival (DFS) in both the short-term (P < 0.001) and long-term (P = 0.005) compared to those with low AROS. Cox regression analysis demonstrated that AROS is a significant predictor for DFS along with large tumor size, tumor multiplicity, vascular invasion, and poor tumor differentiation, which are the known prognostic factors. In conclusion, AROS is a significant biomarker for tumor aggressiveness in non-cirrhotic hepatocellular carcinoma.1122Ysciescopu

    Features of the popliteal lymph nodes seen on musculoskeletal MRI in a Western population

    Get PDF
    To asses the features and explore the clinical relevance of popliteal lymph nodes (PLNs) detected on MRI examination for different pathologies of the knee. A total of 150 knee MRIs, which were conducted for various indications, were retrospectively collected from the Picture Archiving and Communication System. Imaging planes in at least two orthogonal planes were mandatory, with a field of view extending 15 cm cranial from the joint space. The localization of the PLN was determined by measuring the distance of the lowest border of the PLN to the lowest border of the lateral femoral condyle. Clinical diagnosis was obtained from radiology reports and a statistician performed the statistical analysis. The patients were 70 males [mean age 36.6 years (range: 5-72 years)] and 80 females [mean age 41.1 years (range: 9-76 years)]. In 36.7% of the patients, a PLN was visible. The number of PLNs was negatively associated with age (p < 0.001). The mean number of PLNs was 0.5 PLN per patient. The mean length, height, and width were respectively: 0.57 cm (SD = 0.15), 0.84 cm (SD = 0.26), and 0.71 cm (SD = 0.23). The mean location was 5.8 cm (SD = 1.61). No association was found between the presence of PLNs and internal derangement, inflammation, or cancer (p = 0.368). PLNs appearance is age related, with a higher frequency at a young age. The presence of the PLNs showed no relation to a specific clinical situatio

    Tracing magnetism and pairing in FeTe-based systems

    Full text link
    In order to examine the interplay between magnetism and superconductivity, we monitor the non- superconducting chalcogenide FeTe and follow its transitions under insertion of oxygen, doping with Se and vacancies of Fe using spin-polarized band structure methods (LSDA with GGA) starting from the collinear and bicollinear magnetic arrangements. We use a supercell of Fe8Te8 as our starting point so that it can capture local changes in magnetic moments. The calculated values of magnetic moments agree well with available experimental data while oxygen insertions lead to significant changes in the bicollinear or collinear magnetic moments. The total energies of these systems indicate that the collinear-derived structure is the more favorable one prior to a possible superconducting transition. Using a 8-site Betts-cluster-based lattice and the Hubbard model, we show why this structure favors electron or hole pairing and provides clues to a common understanding of charge and spin pairing in the cuprates, pnictides and chalcogenides

    Direct Observation of Localized Spin Antiferromagnetic Transition in PdCrO2 by Angle-Resolved Photoemission Spectroscopy

    Get PDF
    We report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin ordering pattern of Cr3+ ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements, and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system.X1118sciescopu

    Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor

    Full text link
    High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include
    corecore