771 research outputs found
Particle simulation of vibrated gas-fluidized beds of cohesive fine powders
We use three-dimensional particle dynamics simulations, coupled with
volume-averaged gas phase hydrodynamics, to study vertically vibrated
gas-fluidized beds of fine, cohesive powders. The volume-averaged interstitial
gas flow is restricted to be one-dimensional (1D). This simplified model
captures the spontaneous development of 1D traveling waves, which corresponds
to bubble formation in real fluidized beds. We use this model to probe the
manner in which vibration and gas flow combine to influence the dynamics of
cohesive particles. We find that as the gas flow rate increases, cyclic
pressure pulsation produced by vibration becomes more and more significant than
direct impact, and in a fully fluidized bed this pulsation is virtually the
only relevant mechanism. We demonstrate that vibration assists fluidization by
creating large tensile stresses during transient periods, which helps break up
the cohesive assembly into agglomerates.Comment: to appear in I&EC Research, a special issue (Oct. 2006) in honor of
Prof. William B. Russe
Backward Raman compression of x-rays in metals and warm dense matters
Experimentally observed decay rate of the long wavelength Langmuir wave in
metals and dense plasmas is orders of magnitude larger than the prediction of
the prevalent Landau damping theory. The discrepancy is explored, and the
existence of a regime where the forward Raman scattering is stable and the
backward Raman scattering is unstable is examined. The amplification of an
x-ray pulse in this regime, via the backward Raman compression, is
computationally demonstrated, and the optimal pulse duration and intensity is
estimated.Comment: 4 pages, 3 figures, submitted to PR
Enhanced damping of ion acoustic waves in dense plasmas
A theory for the ion acoustic wave damping in dense plasmas and warm dense
matter, accounting for the Umklapp process, is presented. A higher decay rate
compared to the prediction from the Landau damping theory is predicted for
high-Z dense plasmas where the electron density ranges from to and the electron temperature is moderately higher
than the Fermi energy
X-ray Raman compression via two-stream instability in dense plasmas
A Raman compression scheme suitable for x-rays, where the Langmuir wave is
created by an intense beam rather than the pondermotive potential between the
seed and pump pulses, is proposed.
The required intensity of the seed and pump pulses enabling the compression
could be mitigated by more than a factor of 100, compared to conventionally
available other Raman compression schemes. The relevant wavelength of x-rays
ranges from 1 to 10 nm
- β¦