11 research outputs found

    Dynamic nanometer alignment for nanofabrication and metrology

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (leaves 163-164).Future generations of IC fabrication depend in part on continued improvements in lithography. To meet the lithographic challenges posed by 25- nm lithography, a novel through-the-mask, interferometric imaging alignment method is described that has demonstrated detectivity below 1 nm. Approximately x-ray alignment and exposure system was constructed which incorporates this "Interferometric Broadband Imaging" (IBBI) alignment scheme. 18BI employs complementary grating and checkerboard-type alignment marks on mask and wafer, respectively. Interference fringes are imaged onto a CCD camera when viewing the marks at a Littrow angle of 15 degrees. Alignment is signified by the spatial phase discontinuities between two identical sets of interference fringes that move in opposite directions as the mask is translated relative to the wafer. The robustness of IBBI was verified by demonstrating that the relative spatial phase is not affected when overlayers of resist, polysilicon, or aluminum cover the alignment marks. Further verification of robustness was found when the illuminating and viewing beams traversed long optical paths through air, glass, and helium. It is significant that JBBJ measurements are made external to a helium enclosure through the above optical paths, since this allows continuous observation of alignment during exposure. Feedback stabilization was developed to nullify the effects of thermal drift and mechanical disturbances during exposure. Over several hours the relative position of the mask and wafer was demonstrated to be locked to within [sigma]=1.4 nm.by Euclid E. Moon.S.M

    Interferometric-spatial-phase imaging for sub-nanometer three-dimensional positioning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 203-206).Current alignment technology is incapable of satisfying the needs of imminent generations of lithography. This dissertation delineates a novel method of alignment and three-dimensional position metrology that is compatible with many forms of proximity lithography. The method is called Interferometric-Spatial-Phase Imaging (ISPI), and is based on encoding three-dimensional position information in the spatial phase and frequency of interference fringes, viewed with specialized oblique-incidence, dark-field optical microscopes. Alignment detectivity is 500 gm. Unlike amplitude-based interferometers, this spatial-phase-encoding interferometer achieves high alignment detectivity without sensitivity to variations in wavelength, gap and other factors, such as resist layers and changes in the index of refraction in the beampath. Several novel gap detection methods are introduced, with gap detectivity 500 jgm.(cont.) Gap is confirmed with exposure of patterns in resist, taking advantage of near-field interference in a novel Chirped Talbot Effect. Alignment and pattern overlay are confirmed in experiments combining x-ray exposures with continuous ISPI position feedback. Dynamic overlay of patterns in resist is demonstrated to be 2.7 nm, with a clear path for further improvement. Gate structures in a double-gate MOSFET are dynamically aligned to 2.5 nm.by Euclid Eberle Moon.Ph.D

    High precision dynamic alignment and gap control for optical near-field nanolithography

    Get PDF
    The authors demonstrate the use of interferometric-spatial-phase-imaging (ISPI) to control a gap distance of the order of nanometers for parallel optical near-field nanolithography. In optical near-field nanolithography, the distance between the optical mask and the substrate needs to be controlled within tens of nanometers or less. The ISPI technique creates interference fringes from checkerboard gratings fabricated on the optical mask, which are used to determine the gap distance between the mask and the substrate surfaces. The sensitive of this gapping technique can reach 0.15 nm. With the use of ISPI and a dynamic feedback control system, the authors can precisely align the mask and the substrate and keep variation of the gap distance below 6 nm to realize parallel nanolithography. (C) 2013 American Vacuum Society

    Nanostructures Technology, Research, and Applications

    Get PDF
    Contains reports on seventeen research projects and a list of publications.Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH04-95-1-0038Semiconductor Research Corporation Contract 94-MJ-550National Science Foundation Grant ECS 94-07078U.S. Army Research Office Contract DAAL03-92-G-0291Advanced Research Projects Agency/Naval Air Systems Command Contract N00019-92-K-0021National Aeronautics and Space Administration Contract NAS8-36748National Aeronautics and Space Administration Grant NAGW-2003IBM Corporation Contract 1622U.S. Army Research Office Grant DAAH04-94-G-0377U.S. Air Force - Office of Scientific Research Grant F-49-620-92-J-006

    Nanostructures, Technology, Research, and Applications

    Get PDF
    Contains reports on the nanostructures laboratory, eighteen research projects and a list of publications.Joint Services Electronics Program Grant DAAH04-95-1-0038Semiconductor Research Corporation Contract 95-LJ-550National Science Foundation Grant ECS 94-07078U.S. Army Research Office Grant DAAH04-95-1-0564Defense Advanced Research Projects Agency/Naval Air Systems Command Contract N00019-95-K-0131National Aeronautics and Space Administration Contract NAS8-38249National Aeronautics and Space Administration Grant NAGW-2003IBM Corporation Contract 1622U.S. Navy- Office of Naval Research Grant N00014-95-1-1297U.S. Army Research Office Grant DAAH04-94-G-0377U.S. Air Force - Office of Scientific Research Grant F-49-620-92-J-0064U.S. Air Force - Office of Scientific Research Grant F-49-620-95-1-031

    Nanostructures, Technology, Research, and Applications

    Get PDF
    Contains reports on twenty research projects and a list of publications.Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant ECS-94-07078Semiconductor Research CorporationU.S. Army Research Office Grant DAAH04-95-1-0564Defense Advanced Research Projects Agency/Naval Air Systems Command Contract N00019-95-K-0131National Aeronautics and Space Administration Contract NAS8-38249National Aeronautics and Space Administration Grant NAGW-2003IBM Corporation Contract 1622National Science Foundation Graduate FellowshipU.S. Navy - Office of Naval Research Grant N00014-95-1-1297U.S. Army Research Office Contract DAAH04-94-G-0377U.S. Air Force - Office of Scientific Research Grant F49620-92-J-0064U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0311National Science Foundation Contract DMR 94-0034U.S. Air Force - Office of Scientific Research Contract F49620-96-0126Harvard-Smithsonian Astrophysical Observatory Contract SV630304National Aeronautics and Space Administration Grant NAG5-5105Los Alamos National Laboratory Contract E57800017-9

    Nanostructures Technology, Research, and Applications

    Get PDF
    Contains reports on twenty research projects and a list of publications.Joint Services Electronics Program Contract DAAL03-92-C-0001Semiconductor Research Corporation Contract 94-MJ-550U.S. Army Research Office Grant DAAL03-92-G-0291Advanced Research Projects Agency/Naval Air Systems Command Contract N00019-92-K-0021National Science Foundation Grant ECS 90-16437National Science Foundation Grant ECS 90-16737IBM Corporation Contract 1622U.S. Air Force - Office of Scientific Research Grant F-49-62-92-J-0064National Science Foundation Grant DMR 87-19217National Science Foundation Grant DMR 90-22933National Aeronautics and Space Administration Contract NAS8-3674

    Submicron and Nanometer Structures Technology and Research

    Get PDF
    Contains reports on sixteen research projects and a list of publications.Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant ECS 90-16437Semiconductor Research Corporation Contract 90-SP-080U.S. Navy - Naval Research Laboratory Contract N00014-90-K-2018IBM CorporationU.S. Air Force - Office of Scientific Research Grant F49620-92-J-0064National Science Foundation Grant DMR 87-19217National Science Foundation Grant DMR 90-22933National Aeronautics and Space Administration Contract NAS8-36748National Aeronautics and Space Administration Grant NAGW-2003National Science Foundation Grant DMR 90-01698Spire Corporatio

    Nanostructures Technology, Research, and Applications

    Get PDF
    Contains reports on twenty-four research projects and a list of publications.Joint Services Electronics Program Grant DAAHO4-95-1-0038Defense Advanced Research Projects Agency/Semiconductor Research Corporation SA1645-25508PGU.S. Army Research Office Grant DAAHO4-95-1-0564Defense Advanced Research Projects Agency/U.S. Navy - Naval Air Systems Command Contract N00019-95-K-0131Suss Advanced Lithography P. O. 51668National Aeronautics and Space Administration Contract NAS8-38249National Aeronautics and Space Administration Grant NAGW-2003Defense Advanced Research Projects Agency/U.S. Army Research Office Grant DAAHO4-951-05643M CorporationDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research Contract N66001-97-1-8909National Science Foundation Graduate FellowshipU.S. Army Research Office Contract DAAHO4-94-G-0377National Science Foundation Contract DMR-940034National Science Foundation Grant DMR 94-00334Defense Advanced Research Projects Agency/U.S. Air Force - Office of Scientific Research Contract F49620-96-1-0126Harvard-Smithsonian Astrophysical Observatory Contract SV630304National Aeronautics and Space Administration Grant NAG5-5105Los Alamos National Laboratory Contract E57800017-9GSouthwest Research Institute Contract 83832MIT Lincoln Laboratory Advanced Concepts ProgramMIT Lincoln Laboratory Contract BX-655
    corecore